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Motivation: Metabolite identification using mass spectrometry

Goal: help chemists to identify metabolites in a biological sample using
mass spectra.
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(Dührkop et al., 2015, Nguyen et al. 2018)
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Supervised metabolite prediction from mass spectra

Assume we observe pairs of mass spectra and graphs, use them to train a
labeled graph prediction model

(Brouard et al. 2016, Brouard et al. 2019)
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Proposition of a generic framework

• Choose an appropriate representation vector space Z for complex
outputs

• Regress the output in this representation space Z especially by
leveraging regularization and get ĥ : X → Z

• Structured prediction: at testing time, solve a pre-image problem
and get f̂ : Z → Y by decoding f̂ = d ◦ ĥ

In this talk, focus on:

• Learning functions with values in a Hilbert space Z
• Z is chosen to be a Reproducing Kernel Hilbert Space associated to

a so-called output kernel, i.e. a similarity between outputs.

Strong links with Functional Output Regression and Infinite Task learning
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Structured prediction

How to learn a function f : X → Y able to predict Y given X using n
independently identically distributed data (xi , yi )n

i=1 when Y is finite and
huge ? (Nowozin and Lampert 2011)
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Structured prediction

Learning problem
Given some loss function ∆ : Y × Y → R, the true risk structured
prediction problem writes as:

min
f∈F(X ,Y)

EX ,Y [∆(Y , f (X ))]. (1)

In supervised learning, we aim at finding a good estimator fn of a
minimizer of this problem using a given sample i.i.d. {(xi , yi )n

i=1}).
N.B.: ∆ should take into account the structured nature of objects in Y.
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Structured prediction

Various relaxations to mitigate the discrete nature of the output space
(remind that Y is in general very large)

1. energy-based methods that learn an energy function g of
input-output pairs so that: f (x) = arg maxy∈Y g(x , y) (Le Cun,
2006, ..., Bellanger et al. 2016)

2. end-to-end learning (Chen et al. 2015, Pierce et al. 2021, Pilula et
al. 2018, Blondel ..) that learn to generate y or by softenizing ”arg
max”

3. surrogate regression methods that embed the output into a Hilbert
space and solve a surrogate regression problem: output kernel
regression (KDE - Cortes et al. 2005, OK3 - Geurts et al. 2006, 07;
IOKR- Brouard et al. 2011, Kadri et al. 13, Ciliberto et al. 2016)
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Get the intuition with molecule identification from mass spectra
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Novel problems to solve

1. Define Z and ψ : Y → Z
2. Learn h : X → HkY to predict ψ(y) given x
3. Solve a pre-image problem : compute f (x) = d ◦ h(x).
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Output Kernel Regression: use kernel trick in the output space

Choose a kernel ky : Y × Y → R that encodes the similarity between
structured objects
Take ψ(y) = k(·, y)
Z := HkY
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Advantages of defining a kernel k(y , y ′) i?

• Allowing infinite dimensional embeddings while leveraging the
kernel trick

• One principle to rule them all: kernels for various structured objects
(See Gaertner 2006), opening the door to many structured tasks

• label ranking (see Korba et al. 2018)
• link prediction (Geurts et al. 2006, 2007)
• image completion (Cortes et al. 2005, ...)
• graph prediction (Brouard et al. 2020, Brogat-Motte et al. 2021)

A constraint however: to benefit from the kernel trick, not all the
losses are suitable !
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Example: kernel between molecules

Based on FingerID [Heinonen et al., 2012; Dührkop et al., 2015; Nguyen
et al., 2018]

beta-lapachone 
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Figure 2.7: Illustration of the fingerprint concept.

2.3 Molecular fingerprints

An important step in automated identification of metabolites is to measure
the similarity between two molecular structures, e.g. provided in a molecular
structure database. As molecules are very complex objects it is necessary
to define a data representation, which takes this complexity into account.
However, this data representation should at the same time allow e�cient
operations, e.g. similarity calculation. One way to define such a data repre-
sentation are so called molecular fingerprints. These “fingerprints” are (most
commonly) binary vectors where each bit indicates the presence or absence
of a certain structure in the molecular graph, e.g. rings, atom pairing, etc.
(Dührkop et al., 2015; PubChem, 2009). Figure 2.7 illustrates the concept
of fingerprints given a molecule respectively its molecular graph. As finger-
prints are binary vectors their similarity can be e�ciently calculated in many
di↵erent ways, e.g. cosine similarity or Tanimoto coe�cient (Dührkop et al.,
2015). Di↵erent databases are existing providing di↵erent fingerprint defi-
nitions, e.g. PubChem5 or OpenBabel6. In this work we are going to use a
combination of fingerprints from di↵erent databases (see also Section 5.2).

2.4 Simulation of MS/MS spectra using com-

petitive fragmentation modeling

The fragmentation process using collision induced dissociation (CID) (see
Section 2.1.5) is a stochastic process. A biological sample not only contains

5https://pubchem.ncbi.nlm.nih.gov/
6http://openbabel.org/wiki/Main_Page

23

• Use molecular fingerprint c(y) ∈ Rd to encode the structure of a
molecule as a (very large) binary vector

• Each entry indicates the existence or the frequency of a certain
molecular property: atom or bond type, substructure (e.g. aromatic
ring).

Use a Gaussian kernel on c(y) : kY(y , y ′) = exp(−γ‖c(y)− c(y ′)‖2)
15



Structured prediction with Output Kernel Regression

Take ∆(y , y ′) = `(ψ(y), ψ(y ′)) and replace the target problem in Eq.1
by the surrogate problem:

min
h:X→Z

EX ,Y [`(ψ(Y ), h(X ))].

Empirical (regularized) counterpart: with Ω : H → R+ and λ > 0
given some hypothesis space H,

min
h∈H

1
n

n∑
i=1

`(ψ(yi ), h(xi )) + λΩ(h),

using a given dataset {(xi , yi )n
i=1}.

Once we get hn, define
fn(x) = d ◦ hn(x) = arg miny∈Y `(ψ(y), hn(x))

16



From a practical point of view

One wishes to use the kernel trick...

• Condition 1: ` must be computed by using inner products
〈ψ(y), ψ(y ′)〉HkY

= k(y , y ′).
• Condition 2: if an estimated model hn writes as:

hn(x) =
n∑

i=1
βi (x)ψ(yi )

with β : X → Rd , then if ` satisfies Condition 1, one can compute
fn(x) = arg miny∈Y `(ψ(y), hn(x)).

Non-parametric models come to the place: trees-based approaches,
k-nearest-neighbors, ... , kernel methods
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Example: Kernelized Regression Trees (OK3)

htree
n (x) =

n∑
i=1

1i (t(x))∑n
j=1 1j(t(x))︸ ︷︷ ︸
βi (x)

ψ(yi ),

with t(x) is the index of the leaf where x falls, 1i (p) = 1 if xi falls in leaf
p, 0 otherwise.
• Loss: squared loss
• A split is thus selected by maximizing the reduction of embedded

outputs’ empirical variance
• Computations use kernel trick in the output space

Combined with ensemble methods, SOTA results [Geurts et al. 2006,
2007].

18



Now, from a theoretical point of view

Minimize the surrogate true risk:

h∗ ∈ arg min
h∈H

EX ,Y [`(ψ(Y ), h(X ))]

Decoding (pre-image):

d ◦ h∗(x) = arg min
y∈Y

`(ψ(y), h∗(x))

Let f ∗ be a minimizer of the true target risk. We want to compare d ◦ h∗

with f ∗.
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Output Kernel Regression fits the SELF and ILE framework

Structured Encoding Loss Function (SELF, Ciliberto et al. 2016),
Nowak-Villa (2018, 2019), Luige et al. 2019, and Consistent Structured
prediction with Implicit Loss Embeddings (2020):

• general conditions on Y and losses to get Fisher consistency and
excess risk bounds
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SELF property and consequences

Definition (SELF loss - Ciliberto et al. 2016)
∆ : Y × Y → R is said to be SELF if it exists a separable Hilbert space
F , a feature map φ : Y → F and a bounded linear operator A on F such
that:

∆(y , y ′) = 〈φ(y),Aφ(y ′)〉F

Theorem (Ciliberto et al. 2016)
Let ∆ satisfy the SELF property with Y compact then, for every
measurable function h : X → F and d : F → Y, satisfying
d(z) = arg miny∈Y〈φ(y),Az〉F , we have:

ε(d ◦ h∗) = ε(f ∗)
ε(d ◦ h)− ε(f ∗) ≤ 2c∆

√
R(h)− R(h∗),

with ε(f ) = E[∆(Y , f (X ))] = E[〈φ(y),Aφ(y ′)〉F ] and
R(h) = E[‖h(X )− φ(Y )‖2

F ]
21



Output Kernel Regression - squared loss - fits the SELF frame-
work

Trivial case: k(y , y) = 1 and `(ψ(y), h(x)) = ‖ψ(y)− h(x)‖2
HkY

.
Then :

f (x) = d ◦ h(x)
= arg min

y
‖ψ(y)− h(x)‖2

HkY

= arg min
y
− < ψ(y), h(x) >

22
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Kernel-based approach

Use kernel in the input space as well, aka H is also a Reproducing Kernel
Hilbert Space
Main Advantages:
kernels leverage convex optimization, govern regularization, allow for
structured data in the input space as well.
Side advantages:
extend easily to semi-supervised learning
OK, but to get functions with values in Hilbert space Z:
we need Operator-Valued Kernels (OVK) !

24



Operator-valued Kernels and vector-valued Reproducing Kernel
Hilbert Spaces

• (Pedrycs, 1957 ) theory of vv-RKHS
• (Senkene and Tempel’man, 1973) theory of vv-RKHS
• (Hein and Bousquet, 2004) survey on positive definite kernels,

including a short introduction to OVK
• (Micchelli and Pontil, 2005) learning vector-valued functions with

OVK
• (Carmeli et al., 2006) theory of vv-RKHS
• (Carmeli et al. 2010) vv-RKHS and universality
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From scalar-valued kernels to operator-valued kernels

Notations: if Z is a Hilbert Space, L(Z) is the space of bounded linear
operators on Z.

Scalar kernel Operator-valued kernel
k(x , x ′) ∈ R K(x , x ′) ∈ L(Z)

k(x , x ′) = k(x ′, x) K(x , x ′) = K(x ′, x)∗
∀(xi , zi )m

i=1 ∈ (X × R)m, ∀(xi , zi )m
i=1 ∈ (X × Z)m,∑m

i,j=1 zi zj k(xi , xj ) ≥ 0
∑m

i,j=1〈zi ,K(xi , xj )zj 〉Z ≥ 0

Hk = Span {k(·, x), x ∈ X} HK = Span {K(·, x)z : x , z ∈ X × Z}
〈f , k(·, x)〉Hk = f (x) 〈f ,K(·, x)z〉HK = 〈f (x), z〉Z

26



Hint: think about the matrix-valued case

Z = Rd

• A trivial kernel : K(x , x ′) = IZ .k(x , x ′), where IZ is the d × d
identity matrix (independent outputs)

• A separable kernel: K(x , x ′) = A.k(x , x ′) where A is positive
semi-definite matrix d × d (dependencies between outputs)

Important! As in scalar kernel methods, choosing K implies choosing
the way you want to regularize when using ‖ · ‖HK

27



Separable Operator-valued kernels

In particular, we will make use of a special separable operator-valued
kernel:

K (x , x ′) = IHYk(x , x ′),

N.B. If k is a universal kernel then K is universal.
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More about operator-valued-kernels

Again general case: Z Hilbert Space

Scalar kernel Operator-valued kernel
Representer theorem: Representer Theorem:

minh∈Hk L(h(x1), . . . , h(xn)) + λ‖h‖2
Hk

minh∈HK L(h(x1), . . . , h(xn)) + λ‖h‖2
HK

hn(x) =
∑n

i=1 k(x , xi )αi ∈ R hn(x) =
∑n

i=1K(x , xi )αi ∈ Z

N.B. A representer theorem for OVK but still we do not know how to
compute αi ∈ Z
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A simple case: kernel ridge regression 1/2

Assume we observe (xi , zi )n
i=1, define an operator-valued kernel

K : X × X → L(Z) such that: K (x , x ′) = IdZkX (x , x ′)
Let us consider, for λ > 0:

min
h∈HK

n∑
i=1
‖zi − h(xi )‖2

Z + λ‖h‖2
HK (2)
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A simple case: kernel ridge regression 2/2

• The representer theorem (Micchelli and Pontil, 2005) applies
• The unique minimizer hn writes: hridge(x) =

∑n
i=1K(x , xi )α̂i

where α̂i ’s enjoy a closed form, yielding to the following expression:

hridge(x) =
n∑

j=1
βj(x)zj , (3)

with: β(x) = (Kx + nλI)−1κx
X

and κx
X = [kX (x1, x), . . . , kX (xn, x)]T .
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Back to structured prediction: Input Output Kernel Ridge Re-
gression (ridge-IOKR)

Now the feature space Z := HkY is the RKHS associated to kY , a kernel
on Y.
Define the OVK K (x , x ′) = IdHkY

kX (x , x ′)
Denote ψ(y) = kY(·, y).

hn(x) =
n∑

i=1
βi (x)ψ(yi ), (4)

with: β(x) = (Kx + nλI)−1κx
X

and κx
X = [kX (x1, x), . . . , kX (xn, x)]T and λ > 0.

Then, we are able to compute

fn(x) = arg min
y∈Y
‖ψ(yi )− h(xi )‖2

HkY
, (5)

using only inner products of ψ(yi )s.
NB. We retrieve Kernel Dependency Estimation of Cortes et al. as well.

32



More about kernel ridge regression with input and output ker-
nels

• Leveraging unlabeled input data: semi-supervised IOKR (ridge or
not) - Brouard et al. 2011,16 with nice applications to link
prediction.

• Leveraging structure in the output feature space: reduced-rank
approach Work of Luc Brogat-Motte et al., submitted
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Now more interesting loss functions: sparsity and robustness

ε-Ridge
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Data-sparse and robust loss: the example of ε-insensitive loss

Data-sparse and Robust losses [Sangnier et al. 2017, Laforgue et al.
2020]:
With a slight abuse of notation
Let ` : Z → R be a convex loss with unique minimum

at 0, and ε > 0. The ε-insensitive version of `, denoted `ε, is defined
by:

`ε(z) = (` � χBε) (z) =

 `(0) if ‖z‖Z ≤ ε
inf

‖d‖Z≤1
`(z − εd) otherwise ,

Infimal convolution: (f �g)(x) = infx ′ f (x ′) + g(x − x ′). (Bauschke et
al. 2011)
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Reminder: representer theorem and convex losses

General case: the output space is Z: Hilbert Space and output training
data are denoted zi . Let ` : Z → R a convex loss.

Theorem (Micchelli et Pontil 2005)

The solution to the learning problem is given by

hn = 1
λn

n∑
i=1
K(·, xi )α̂i , (6)

with (α̂i )n
i=1 ∈ Zn the solutions to the dual problem:

Problem

(Brouard et al. 2016, Sangnier et al. 2017)
min(αi )n

i=1∈Zn
∑n

i=1 `
?
i (−αi ) + 1

2λn
∑n

i,j=1 〈αi ,K(xi , xj)αj〉Z ,

where g? : α ∈ Z 7→ supz∈Z 〈α, z〉Z − g(z) denotes the
Fenchel-Legendre transform of a function g : Z → R.

with `i (y) = `(yi − y).
36



Some limitations

• 1st limitation: the Fenchel-Legendre transform `? needs to be
computable (→ assumption)

• 2nd limitation : the dual variables (αi )n
i=1 are still infinite

dimensional!

If Z = Span{zj , j ≤ n} invariant by K, i.e.
∀(x , x ′), z ∈ Z ⇒ K(x , x ′)z ∈ Z

α̂i ∈ Z → possible reparametrization

37



Some limitations

• 1st limitation: the Fenchel-Legendre transform `? needs to be
computable (→ assumption)

• 2nd limitation : the dual variables (αi )n
i=1 are still infinite

dimensional!

If Z = Span{zj , j ≤ n} invariant by K, i.e.
∀(x , x ′), z ∈ Z ⇒ K(x , x ′)z ∈ Z

α̂i ∈ Z → possible reparametrization

37



The double representer theorem

Laforgue et al. ICML 2020.
Theorem (Double representer theorem)

Assume that OVK K and loss ` satisfy the appropriate assumptions
(see paper for details, verified by standard kernels and our losses), then

ĥ = argmin
HK

1
n
∑

i
`(h(xi )− zi ) + λ

2 ‖h‖
2
HK is given by

ĥ = 1
λn

n∑
i,j=1
K(·, xi ) ω̂ij zj ,

with Ω̂ = [ω̂ij ] ∈ Rn×n the solution to the finite dimensional problem

min
Ω∈Rn×n

n∑
i=1

Li
(
Ωi :,K Z)+ 1

2λn Tr
(
M̃>(Ω⊗ Ω)

)
,

with M̃ the n2 × n2 matrix writing of M s.t. Mijkl = 〈zk ,K(xi , xj)zl〉Z .
38



Specific dual problems for our losses 1

If K = k IZ , the solutions to the ε-Ridge regression, κ-Huber regression,
and ε-SVR primal problems

(P1) min
h∈HK

1
2n

n∑
i=1
‖h(xi )− zi‖2

Z,ε + Λ
2 ‖h‖

2
HK ,

(P2) min
h∈HK

1
n

n∑
i=1

`H,κ(h(xi )− zi ) + Λ
2 ‖h‖

2
HK ,

(P3) min
h∈HK

1
n

n∑
i=1
‖h(xi )− zi‖Z,ε + Λ

2 ‖h‖
2
HK ,

are given by eq:expansion, with Ω̂ = Ŵ V−1, and Ŵ the solution to the
respective finite dimensional dual problems
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Specific dual problems for our losses 2

For the ε-ridge, ε-SVR and κ-Huber, it holds Ω̂ = Ŵ V−1, with Ŵ
the solution to these finite dimensional dual problems:

(D1) min
W∈Rn×n

1
2 ‖AW − B‖2

Fro + ε ‖W ‖2,1,

(D2) min
W∈Rn×n

1
2 ‖AW − B‖2

Fro + ε ‖W ‖2,1,

s.t. ‖W ‖2,∞ ≤ 1,

(D3) min
W∈Rn×n

1
2 ‖AW − B‖2

Fro ,

s.t. ‖W ‖2,∞ ≤ κ,

with V , A, B such that: VV> = K Y , A>A = K X/(λn) + In

(or A>A = K X/(λn) for the ε-SVR), and A>B = V .
40



Projected Gradient Algorithm

Projected Gradient Descent algorithms with appropriate projection
operator. For instance, (D1) is a multi-task lasso problem (See Obozinski

et al. 2010)

41



Proximal operators

Block Soft Thresholding operator: BST(x , τ) = (1− τ/‖x‖)+ x .
Projection operator for (D2) such that Proj(x , τ) = min (τ/‖x‖, 1) x .

42



More on IOKR

• Generalization bounds in the context of algorithm stability (extension
of Elisseff, 2002; Audiffren and Kadri (2013); Laforgue et al. 2020)

• Deep IOKR: the example of KAE, kernel autoencoder (Laforgue et
al. 2019), Deep structured prediction (El Ahmad et al., current
work)

• Reduced-rank IOKR (a low-rank approach to IOKR-ridge with excess
risk bounds, Brogat-Motte et al. submitted in 2021)
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IOKR: the big picture
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Input kernels: probability product kernel

• A mass spectrum is defined as a set of peaks: x = {x(`)}nx
`=1.

• Each peak is modeled as a 2D normal distribution centered around
the observed position: px(`) ∼ N (x(`),Σ).

• The covariance is shared with all peaks: Σ =
[
σ2

m 0
0 σ2

i

]
.

46



Input kernel: probability product kernel

• A spectrum is represented as a mixture of its peak distributions:

px = 1
nx

nx∑
`=1

px(`).

• Probability product kernel [Jebara et al., 2004] between the peaks of
two spectra x and x ′:

k(x , x ′) =

∫
R2

px (z)px′ (z)dz

=
1

nx nx′

1
4πσmσi

nx ,nx′∑
`,`′=1

exp
(
−

1
4

(
x(`)− x ′(`′)

)T
Σ−1
(

x(`)− x ′(`′)
))
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IOKR on metabolite prediction

Metabolite dataset: initially represented by 4136-size fingerprints
(Brouard et al., 2016). Tanimoto kernel. Training data: 5579 molecules,
Test data: 1359 molecules.

Table 1: Top 1 / 10 / 20 test accuracies (%)

λ 1e-6 1e-4

ridge-IOKR 35.7 | 79.9 | 86.6 38.1 | 82.0 | 88.9
Huber-IOKR 38.3 | 82.2 | 89.1 37.7 | 81.9 | 88.8
ε-2-IOKR 37.1 | 81.7 | 88.3 36.3 | 81.2 | 87.9

48



Outline

Introduction

Output Kernel Regression

Input Output Kernel Regression

Back to labeled graph prediction

Discussion

References

Appendix: Reduced-rank approach

Appendix: Quantile regression: ITL
49



Other ”complex” output variables

All these problems can be addressed by learning functions with outputs
in a Hilbert space

Discrete structures

Label Ranking
Sequence, tree prediction
Graph prediction

Multiple Tasks
Hierarchical Classification
Multi-label Classification
Multiple Output Regression

Functions
Infimum of Tasks Learning
Functional Regression
Meta-modeling
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Functional Output Regression beyond functional squared loss

Assume now we want to learn to predict a function h : X → Z with
functional outputs in Z := L2[Θ, µ] where Θ is a compact.
Consider again losses that are robust to functional outliers or data-sparse,
going beyond the squared loss case solved by Kadri et al.(2016)

The problem then differs from structured prediction

• we need more than just being able to compute inner products
between ψ(yi ) and h(x): we need to compute h(x)(θ)

• In the dual problem, the αi s are functions of θ
• A re-parametrization using (linear) splines or truncated

approximated eigenspectrum (Lambert et al. 2022) can be used to
effectively solve the dual problem for separable OVK of the form:
K (x , x ′) = k(x , x ′)TkΘ ∈ L(L2(Θ, µ)),

• with (TkΘ f )(θ) =
∫

k(θ, θ′)f (θ)dµ(θ′).
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Conclusion

• The kernel trick used in the output space
• Leveraging vv-RKHS for learning output in infinite dimensional

embedding space
• Practical algorithms even for losses more involved than the squared

loss
• Other results: generalization bounds within the algorithm stability

context
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Perspectives

• Scaling up the approaches:
• Exploit approximations (Random Fourier features: Brault et al.

2017; Projection Learning: Bouche et al. 2020, Sketching, current
work of El Ahmad et al.)

• Kernel Learning:
• Exploiting approximations for both input and output kernel
• Deep hybrid architecture (learning K) - see for instance (Laforgue et

al. 2019, Giffon et al. 2019, Li et al. 2019, Lambert 2021)
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Additional thoughts ...

• Handling the output features is not exclusive of kernel methods: see
label embedding in one-shot/few-shot learning (Lampert et al. 2015,
Djerrab et al. 2018), work of Lerouge et al. (2015) around IODA
and Belharbi et al. (2017), for neural networks.

• Leveraging other distances like those in Optimal Transport (see
Luise, Rudi et al. 2018) yields to other non-parametric models: see
Brogat-Motte et al. ’s work on graph prediction with
Fused-Gromov-Wasserstein barycenters (ICML 2022).
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Codes

• Dualization and Robust losses
(https://github.com/plaforgue/dual_exp), Pierre Laforgue

• Infinite task Learning: torch-itl
(https://github.com/allambert/torch_itl), Alex Lambert,
Sanjeel Parekh, Dimitri Bouche.

• Reduced-Rank IOKR (not yet public, Luc Brogat-Motte)
• Operalib (https://github.com/operalib/operalib) (Romain

Brault) RFF for OVK, KRR, IOKR, ITL
• Currently tested : release of a general scikit-learn compatible library

with Hi!Paris engineering group: if interested to test it, please send
me an email.
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• Álvarez, M. A. and Rosasco, L. and Lawrence, N. D., Kernels for vector-valued functions: a
review, Foundations and Trends in Machine Learning, 4:3,2012.
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More about regularized least-squares regression: a reduced rank
approach

Let λ1, λ2 > 0 and p ∈ N∗. Let Pp be the set of the orthogonal
projections from Z to Z of rank p.

We consider the estimator x → Pĥλ2 (x) where P is defined as

P := argmin P∈PpE[‖Ph∗(x)− h∗(x)‖2
Z ]. (7)

Nevertheless, P is unknown, thus we estimate it with P̂ defined by

P̂ := argmin P∈Pp

1
n

n∑
i=1
‖Pĥλ1 (xi )− ĥλ1 (xi )‖2

Z . (8)

and we propose the estimator

ĥλ1,λ2,p(x) = P̂ĥλ2 (x) (9)
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Reduced-rank regression in Structured Prediction

Novel estimator for IOKR in structured prediction (Z := HkY )

f̂ (x) = argmin y∈Y‖P̂ĥ(x)− ψ(y)‖2
Z . (10)

Algorithm ridge-IOKR Reduced-rank IOKR

Training O(n3) O(2n3)
Decoding O(ntestn|Y|) O(ntestp|Y|)

Table 2: Time complexity of IOKR versus reduced-rank IOKR.
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Fish age prediction

Goal: monitoring fish resources with the goal of avoiding overfishing.
Fishes are collected and their age is measured from images of their
otoliths (part of inner ear).

Fish bone images of otoliths at different ages. Dataset from the Norwegian Marine Data Center (Ordonez et al. 2020).

Question: automatic prediction of fish age from otolith images ?
(Wu et al., Nature (2009), Martino et al. 2019, Ordonez et al. 2020)
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Quantile regression for fish age prediction

Many reasons for quantile regression: outliers in the data, more
meaningful to get median, quartiles ...

Question: Predict any θ-quantile of Y given x , for θ ∈ (0, 1) [Brault et
al. 2019]
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Multi-task learning and matrix-valued kernels

Multi-task learning problems:

• Generally solved by leveraging the dependency between tasks
through some appropriate regularization.

• Matrix-valued kernels is a relevant option for multi-task learning
(Michelli and Pontil 2005, Baldassare et al. 2012, Alvarez et al.
2012, Kadri et al. 2013, Lim et al. 2013, Sangnier et al. 2016)
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Infinite Task Learning

Jointly solve an infimum of tasks, i.e. tasks parameterized by a
continuous parameter

• At training time, more opportunities to jointly control the solution(s)
• At testing time, a new task can be solved

N.B. Parametric task learning first defined by Takeuchi et al. in 2013 was
solved for piecewise-linear output functions.
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Infinite Task Learning

Framework proposed: learn function-valued functions

input 7→ (parameter 7→ output)

X → (Θ→ Y)

Goal : Learn a global function while preserving desired properties of the
output function over the θ space Θ.
Related works: Functional Output Regression problem (see for
instance Kadri et al. 2010, Kadri et al. 2016)
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The example of quantile regression

• (X ,Y ) ∈ Rd × R random variables
• θ ∈ (0, 1)

Conditional quantile:

q(x) = inf {y ∈ R , P(Y ≤ y | X = x) = θ}
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The example of quantile regression

• (X ,Y ) ∈ Rd × R random variables
• θ ∈ (0, 1)

Conditional quantile:

q(x) = inf {y ∈ R , P(Y ≤ y | X = x) = θ}
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The example of quantile regression

Learn a function h : X ×HkΘ in order to approach the conditional
quantile of Y given x for any θ ∈ (0, 1).

Pinball loss: `(θ, y , h(x)(θ)) = ρθ(y − h(x)(θ)) =
max(θ(y − h(x)(θ)), (1− θ)(y)h(x)(θ))
Why ?
Remind that a quantile qY (θ) := arg minu E[ρθ(Y − u)].
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What loss for infinite task learning?

Remember θ is not observed

I`(y , h(x)) =
∫

Θ
`(θ, y , h(x)(θ))dµ(θ)

N.B. In the following, Θ = R and for µ, the Lebesgue measure.
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Task parameterized by a continuous parameter θ

(Regularized) ERM setting
minimize the regularized empirical risk in H ⊂ F(X ,F(Θ,Y) using a
training set Sn = (xi , yi )n

i=1 ⊂ (X × Y)n, λ > 0 and Ω(h) is a
regularization term.

Ln(h) = 1
n

n∑
i=1

I`(yi , h(xi )) + λΩ(h)
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First question: Sampled Empirical Risk

Estimating the integral using a weighted sample {θ1, . . . , θm} using
quadrature rules, Monte-Carlo or Quasi-Monte-Carlo estimators.
In practice, we take:

Im
` =

m∑
j=1

ηj`(θj , y , h(x)(θj))

Monte-Carlo: ηj = 1
m
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Second Question: Hypothesis spaces

Say h ∈ H is our predictive model, we need to define:

• output functional space h(x) ∈ Z ⊂ F(Θ,Y)
• hypothesis space: h ∈ H ⊂ F(X ,Z)

Again vv-RKHS come into play:
Take two scalar kernels kX : X ×X → R and kΘ : Θ×Θ→ R, construct

K :
{
X × X → L(HkΘ )
(x , z) 7→ kX (x , z)IHkΘ

With this choice: structure:= HK ' HkX ⊗HkΘ i.e
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Infinite task learning

In infinite task learning, we observed (xi , yi )n
i=1 ∈ (X × Y)n and we

search for functions:
X → HkΘ where HkΘ is Y-valued.
• Our target problem is learning a function-valued function without

observing functional output data during training. We have only
surrogate data.

• What is important in practice is to be able to compute during
training and testing, the images of functions θ → h(x)(θ) for any
x ∈ X .
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Optimization

Let us take advantage of the regularized sampled risk and exploit a
representer theorem.
Then solve in the primal space.
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The example of infinite quantile regression

• (X ,Y ) ∈ Rd × R random variables
• θ ∈ (0, 1)

Conditional quantile:

q(x) = inf {y ∈ R , P(Y ≤ y | X = x) = θ}
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The example of infinite quantile regression

• (X ,Y ) ∈ Rd × R random variables
• θ ∈ (0, 1)

Conditional quantile:

q(x) = inf {y ∈ R , P(Y ≤ y | X = x) = θ}
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The example of infinite quantile regression

Pinball loss:
`(θ, y , h(x)(θ) = ρθ(y−h(x)(θ)) = max(θ(y−h(x)(θ)), (1−θ)(y)h(x)(θ))
Why ?
Remind that a quantile qY (θ) := arg minu E[ρθ(Y − u)].
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The example of infinite quantile regression

Properties we want for θ → q̂(x)(θ), given x

• Continuous
• Smooth
• Nondecreasing

This yields i) take Gaussian kernel for kΘ and ii) appropriate penalty on
shape.
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Hypothesis of the representer theorem with shape penalty

ĥ = arg min
h∈HK

1
n

n∑
i=1

Im
` (h(xi ), yi ) + λ

2 ‖h‖
2
HK + Ω̃nc(h). (11)

with

Ω̃n,m(h) := λnc
1

nm

n,m∑
i,j=1

∣∣−(∂Θh)(x̃i )(θ̃j)
∣∣
+ .
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Representer theorem with shape penalty

Theorem

The previous joint quantile regression problem admits a unique solution
ĥ ∈ HK, and there exist (αij)n,m

i,j=1 ∈ Rn×m and (βij)n,m
i,j=1 ∈ Rn×m such

that for all (x , θ) ∈ X ×Θ,

ĥ(x)(θ) =
n,m∑
i,j

kX (x , xi )
(
αijkΘ(θ, θj) + βij∂2kΘ(θ, θ̃j)

)
. (12)

For simplicity, we took the same number m for estimating the
non-crossing constraint and the integral loss I`.
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Relevance of shape penalty on a toy problem
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Figure 1: Effect of regularization parameter on infinite quantile regression

Intensive experimental results in (Brault, Lambert, et al. 2019) on a large
set of UCI repositories.
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Quantile regression on fish age (otolith problem)

Figure 2: Quantile curve predicted by ITL

Recent results obtained by Lambert with an hybrid architecture:
pre-trained convolutional network (Ordoñez et al. 2020) that feeds
Random Fourier features for x and θ.
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Comparison with structured output regression

X : input space

Structured prediction
Y: finite set of structured objects
kY : kernel over Y

Z := HkY : RKHS associated to kY
X h−→ Z d−→ Y

Goal: obtain f (x) = d ◦ h(x)

Infinite Task learning
Y: output (observation) space
Θ: task parameter space
kΘ: kernel over Θ
Z := HkΘ : RKHS associated to kΘ

X h−→ (Θ→ Y)︸ ︷︷ ︸
Z

Goal: obtain h(x)(θ)
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