Consensus-based optimization

Claudia Totzeck University of Wuppertal

Mascot NUM, Clermont-Ferrand

June 7-9, 2022

MATHEMATICAL MODELLING, ANALYSIS AND COMPUTATIONAL MATHEMATICS

BERGISCHE UNIVERSITÄT WUPPERTAL

(smoothed) Hegselmann-Krause (2002)

Cucker-Smale dynamics (2007)

Motivation

Let $f: \mathbb{R}^D \to \mathbb{R}^+, D \ge 1$, be a function. The problem we consider is given by

$$x^* := \operatorname*{argmin}_{x \in \mathbb{R}^D} f(x).$$

<u>Task</u>: Construct an algorithm that finds the global minimizer of f!

What's on the market?

- Genetic Algorithms
- Particle Swarm optimization
- Stochastic Gradient descent
- Ensemble methods (Kalman)
- Simulated annealing

What was observed:

- local best / global best information
- indistiguishable particles
- no structure (O/S/PDE)
- ► few convergence proofs
- \Rightarrow What can we do?

Let $f: \mathbb{R}^D \to \mathbb{R}^+, D \ge 1$, be a function. The problem we consider is given by

 $x^* := \operatorname*{argmin}_{x \in \mathbb{R}^D} f(x).$

<u>Task</u>: Construct an algorithm that finds the global minimizer of f!

What's on the market?

- Genetic Algorithms
- Particle Swarm optimization
- Stochastic Gradient descent
- Ensemble methods (Kalman)
- Simulated annealing

. . . .

What was observed:

- local best / global best information
- indistiguishable particles
- ▶ no structure (O/S/PDE)
- ► few convergence proofs
- \Rightarrow What can we do?

Let $f: \mathbb{R}^D \to \mathbb{R}^+, D \ge 1$, be a function. The problem we consider is given by

 $x^* := \operatorname*{argmin}_{x \in \mathbb{R}^D} f(x).$

<u>Task</u>: Construct an algorithm that finds the global minimizer of f!

What's on the market?

- Genetic Algorithms
- Particle Swarm optimization
- Stochastic Gradient descent
- Ensemble methods (Kalman)
- Simulated annealing

....

What was observed:

- local best / global best information
- indistiguishable particles
- no structure (O/S/PDE)
- few convergence proofs
- \Rightarrow What can we do?

Let $f: \mathbb{R}^D \to \mathbb{R}^+, D \ge 1$, be a function. The problem we consider is given by $\underset{x \in \mathbb{R}^D}{\operatorname{argmin} f(x)}.$

<u>Task</u>: Construct an algorithm that finds the global minimizer of f!

Features we like:

- global minimum
- particle scheme
- no gradient information
- indistiguishable particles
- mean-field equation for analysis

Outline

Introduction to CBO

- motivation of weighted mean
- importance of scaled stochastics
- numerical illustration

Overview & some comments

- machine learning
- component-wise common noise
- towards particle swarm optimization Vlasov dynamic
- towards Boltzmann
- dynamics constrained to sphere

Combine swarm optimization and opinion dynamics to obtain:

$$dX_{t}^{i} = -\lambda(X_{t}^{i} - v_{f}) H[f(X_{t}^{i}) - f(v_{f})]dt + \sigma|X_{t}^{i} - v_{f}|dB_{t}^{i}, \quad i = 1, ..., N,$$

where the weighted average v_f is given by

$$v_f = \frac{\sum_{i=1}^N X_t^i \omega_f^{\alpha}(X_t^i)}{\sum_{i=1}^N \omega_f(\alpha)(X_t^i)}, \quad \text{with} \quad \omega_f^{\alpha}(x) = \exp(-\alpha f(x)),$$

supplemented with random initial data $\rho_0 = \text{law}(X_0^i)$. We use the notation

- f objective function,
- λ drift parameter,
- σ diffusion parameter,
- Note:
 - v_f is our approximation of x^*
 - ► interactions scale **linear** in *N*

- lpha weight parameter,
- B_t^i Brownian Motion,
- *H* Heaviside function.
 - ▶ analysis with $H \equiv 1$
 - ► assumption: unique *x*^{*}

Combine swarm optimization and opinion dynamics to obtain:

$$dX_{t}^{i} = -\lambda(X_{t}^{i} - v_{f}) H[f(X_{t}^{i}) - f(v_{f})]dt + \sigma|X_{t}^{i} - v_{f}|dB_{t}^{i}, \quad i = 1, ..., N,$$

where the weighted average v_f is given by

$$v_f = \frac{\sum_{i=1}^N X_t^i \omega_f^{\alpha}(X_t^i)}{\sum_{i=1}^N \omega_f(\alpha)(X_t^i)}, \quad \text{with} \quad \omega_f^{\alpha}(x) = \exp(-\alpha f(x)).$$

supplemented with random initial data $\rho_0 = \text{law}(X_0^i)$. We use the notation

- f objective function,
- λ drift parameter,
- σ diffusion parameter,

- α weight parameter,
- B_t^i Brownian Motion,
- *H* Heaviside function.

- Note:
 - v_f is our approximation of x^*
 - ▶ interactions scale **linear** in N
- analysis with $H \equiv 1$
- ▶ assumption: unique x^*

Let $f: \mathbb{R}^D \to \mathbb{R}^+, D \ge 1$, be a function. The problem we consider is given by

 $\underset{x \in \mathbb{R}^{D}}{\operatorname{argmin}} f(x).$

<u>Task</u>: Construct an algorithm that finds the global minimizer of f!

Features we like:

- global minimum
- particle scheme
- no gradient information
- indistiguishable particles
- mean-field equation for analysis

Assume that $f \in C_b(\mathbb{R}^d, \mathbb{R}^+)$ attains a unique global minimum at x_* and let $\rho \in \mathcal{P}^{ac}(\mathbb{R}^d)$ with $x_* \in \text{supp}(\rho)$. Then we have that $\lim_{\alpha \to \infty} v_f^{\alpha} = x_*$.

Proof: (Lyapunov argument) By construction

$$\eta^{\alpha} = e^{-\alpha f(x)} \rho(x) / ||e^{-\alpha f}||_{L^{1}(\rho)} \in \mathcal{P}^{ad}(\mathbb{R}^{d}).$$
 We first show that the functional
 $\mathcal{E}_{\alpha}(f) := \int_{\mathbb{R}^{d}} f d\eta^{\alpha} \longrightarrow f_{*} = f(x_{*}) \quad \text{as} \quad \alpha \to \infty.$

Indeed, it holds

$$\begin{aligned} \frac{d}{d\alpha} \mathcal{E}_{\alpha}(f - f_{*}) &= \frac{d}{d\alpha} \int f - f_{*} d\eta^{\alpha}(x) \\ &= -\int f(x)(f(x) - f_{*}) d\eta^{\alpha}(x) + \int f(y) d\eta^{\alpha}(y) \int (f(z) - f_{*}) d\eta^{\alpha}(z) \\ &= -\int f(x)^{2} d\eta^{\alpha}(x) + \int f(x) d\eta^{\alpha}(x) \int f(y) d\eta^{\alpha}(y) \\ &= -\frac{1}{2} \int |f(x) - f(y)|^{2} d\eta^{\alpha}(x) d\eta^{\alpha}(y) < 0 \text{ (strictly as } f \text{ nonconst)} \end{aligned}$$

Since $\mathcal{E}_{\alpha}(f) \geq f_*$ for all α this implies $\mathcal{E}_{\alpha}(f) \rightarrow f_*$ as $\alpha \rightarrow \infty$.

Assume that $f \in C_b(\mathbb{R}^d, \mathbb{R}^+)$ attains a unique global minimum at x_* and let $\rho \in \mathcal{P}^{ac}(\mathbb{R}^d)$ with $x_* \in \text{supp}(\rho)$. Then we have that $\lim_{\alpha \to \infty} v_f^{\alpha} = x_*$.

Proof: (Lyapunov argument) By construction

$$\eta^{\alpha} = e^{-\alpha f(x)} \rho(x) / ||e^{-\alpha f}||_{L^{1}(\rho)} \in \mathcal{P}^{ad}(\mathbb{R}^{d}).$$
 We first show that the functional
 $\mathcal{E}_{\alpha}(f) := \int_{\mathbb{R}^{d}} f d\eta^{\alpha} \longrightarrow f_{*} = f(x_{*}) \quad \text{as} \quad \alpha \to \infty.$

Indeed, it holds

$$\begin{aligned} \frac{d}{d\alpha} \mathcal{E}_{\alpha}(f - f_{*}) &= \frac{d}{d\alpha} \int f - f_{*} d\eta^{\alpha}(x) \\ &= -\int f(x)(f(x) - f_{*}) d\eta^{\alpha}(x) + \int f(y) d\eta^{\alpha}(y) \int (f(z) - f_{*}) d\eta^{\alpha}(z) \\ &= -\int f(x)^{2} d\eta^{\alpha}(x) + \int f(x) d\eta^{\alpha}(x) \int f(y) d\eta^{\alpha}(y) \\ &= -\frac{1}{2} \int |f(x) - f(y)|^{2} d\eta^{\alpha}(x) d\eta^{\alpha}(y) < 0 \text{ (strictly as } f \text{ nonconst}) \end{aligned}$$

Since $\mathcal{E}_{\alpha}(f) \geq f_*$ for all α this implies $\mathcal{E}_{\alpha}(f) \rightarrow f_*$ as $\alpha \rightarrow \infty$.

Assume that $f \in C_b(\mathbb{R}^d, \mathbb{R}^+)$ attains a unique global minimum at x_* and let $\rho \in \mathcal{P}^{ac}(\mathbb{R}^d)$ with $x_* \in \text{supp}(\rho)$. Then we have that $\lim_{\alpha \to \infty} v_f^{\alpha} = x_*$.

Proof: (Lyapunov argument) By construction

$$\eta^{\alpha} = e^{-\alpha f(x)} \rho(x) / ||e^{-\alpha f}||_{L^{1}(\rho)} \in \mathcal{P}^{ad}(\mathbb{R}^{d}).$$
 We first show that the functional
 $\mathcal{E}_{\alpha}(f) := \int_{\mathbb{R}^{d}} f d\eta^{\alpha} \longrightarrow f_{*} = f(x_{*}) \quad \text{as} \quad \alpha \to \infty.$

Indeed, it holds

$$\begin{aligned} \frac{d}{d\alpha} \mathcal{E}_{\alpha}(f - f_{*}) &= \frac{d}{d\alpha} \int f - f_{*} d\eta^{\alpha}(x) \\ &= -\int f(x)(f(x) - f_{*}) d\eta^{\alpha}(x) + \int f(y) d\eta^{\alpha}(y) \int (f(z) - f_{*}) d\eta^{\alpha}(z) \\ &= -\int f(x)^{2} d\eta^{\alpha}(x) + \int f(x) d\eta^{\alpha}(x) \int f(y) d\eta^{\alpha}(y) \\ &= -\frac{1}{2} \int |f(x) - f(y)|^{2} d\eta^{\alpha}(x) d\eta^{\alpha}(y) < 0 \text{ (strictly as f nonconst)} \end{aligned}$$

Since $\mathcal{E}_{\alpha}(f) \geq f_*$ for all α this implies $\mathcal{E}_{\alpha}(f) \rightarrow f_*$ as $\alpha \rightarrow \infty$.

Assume that $f \in C_b(\mathbb{R}^d, \mathbb{R}^+)$ attains a unique global minimum at x_* and let $\rho \in \mathcal{P}^{ac}(\mathbb{R}^d)$ with $x_* \in \text{supp}(\rho)$. Then we have that $\lim_{\alpha \to \infty} v_f^{\alpha} = x_*$.

Proof: (Lyapunov argument) By construction

$$\eta^{\alpha} = e^{-\alpha f(x)} \rho(x) / ||e^{-\alpha f}||_{L^{1}(\rho)} \in \mathcal{P}^{ad}(\mathbb{R}^{d}).$$
 We first show that the functional
 $\mathcal{E}_{\alpha}(f) := \int_{\mathbb{R}^{d}} f d\eta^{\alpha} \longrightarrow f_{*} = f(x_{*}) \quad \text{as} \quad \alpha \to \infty.$

Indeed, it holds

$$\begin{aligned} \frac{d}{d\alpha} \mathcal{E}_{\alpha}(f - f_{*}) &= \frac{d}{d\alpha} \int f - f_{*} d\eta^{\alpha}(x) \\ &= -\int f(x)(f(x) - f_{*}) d\eta^{\alpha}(x) + \int f(y) d\eta^{\alpha}(y) \int (f(z) - f_{*}) d\eta^{\alpha}(z) \\ &= -\int f(x)^{2} d\eta^{\alpha}(x) + \int f(x) d\eta^{\alpha}(x) \int f(y) d\eta^{\alpha}(y) \\ &= -\frac{1}{2} \int |f(x) - f(y)|^{2} d\eta^{\alpha}(x) d\eta^{\alpha}(y) < 0 \text{ (strictly as f nonconst)} \end{aligned}$$

Since $\mathcal{E}_{\alpha}(f) \geq f_*$ for all α this implies $\mathcal{E}_{\alpha}(f) \rightarrow f_*$ as $\alpha \rightarrow \infty$.

Assume that $f \in C_b(\mathbb{R}^d, \mathbb{R}^+)$ attains a unique global minimum at x_* and let $\rho \in \mathcal{P}^{ac}(\mathbb{R}^d)$ with $x_* \in \text{supp}(\rho)$. Then we have that $\lim_{\alpha \to \infty} v_f^{\alpha} = x_*$.

Proof: (Lyapunov argument) By construction

$$\eta^{\alpha} = e^{-\alpha f(x)} \rho(x) / ||e^{-\alpha f}||_{L^{1}(\rho)} \in \mathcal{P}^{ad}(\mathbb{R}^{d}).$$
 We first show that the functional
 $\mathcal{E}_{\alpha}(f) := \int_{\mathbb{R}^{d}} f d\eta^{\alpha} \longrightarrow f_{*} = f(x_{*}) \quad \text{as} \quad \alpha \to \infty.$

Indeed, it holds

$$\begin{aligned} \frac{d}{d\alpha} \mathcal{E}_{\alpha}(f - f_{*}) &= \frac{d}{d\alpha} \int f - f_{*} d\eta^{\alpha}(x) \\ &= -\int f(x)(f(x) - f_{*}) d\eta^{\alpha}(x) + \int f(y) d\eta^{\alpha}(y) \int (f(z) - f_{*}) d\eta^{\alpha}(z) \\ &= -\int f(x)^{2} d\eta^{\alpha}(x) + \int f(x) d\eta^{\alpha}(x) \int f(y) d\eta^{\alpha}(y) \\ &= -\frac{1}{2} \int |f(x) - f(y)|^{2} d\eta^{\alpha}(x) d\eta^{\alpha}(y) < 0 \text{ (strictly as f nonconst)} \end{aligned}$$

Since $\mathcal{E}_{\alpha}(f) \geq f_*$ for all α this implies $\mathcal{E}_{\alpha}(f) \rightarrow f_*$ as $\alpha \rightarrow \infty$.

Assume that $f \in C_b(\mathbb{R}^d, \mathbb{R}^+)$ attains a unique global minimum at x_* and let $\rho \in \mathcal{P}^{ac}(\mathbb{R}^d)$ with $x_* \in \text{supp}(\rho)$. Then we have that $\lim_{\alpha \to \infty} v_f^{\alpha} = x_*$.

Proof: (Lyapunov argument) By construction

$$\eta^{\alpha} = e^{-\alpha f(x)} \rho(x) / ||e^{-\alpha f}||_{L^{1}(\rho)} \in \mathcal{P}^{ad}(\mathbb{R}^{d}).$$
 We first show that the functional
 $\mathcal{E}_{\alpha}(f) := \int_{\mathbb{R}^{d}} f d\eta^{\alpha} \longrightarrow f_{*} = f(x_{*}) \quad \text{as} \quad \alpha \to \infty.$

Indeed, it holds

$$\begin{split} \frac{d}{d\alpha} \mathcal{E}_{\alpha}(f - f_{*}) &= \frac{d}{d\alpha} \int f - f_{*} d\eta^{\alpha}(x) \\ &= -\int f(x)(f(x) - f_{*}) d\eta^{\alpha}(x) + \int f(y) d\eta^{\alpha}(y) \int (f(z) - f_{*}) d\eta^{\alpha}(z) \\ &= -\int f(x)^{2} d\eta^{\alpha}(x) + \int f(x) d\eta^{\alpha}(x) \int f(y) d\eta^{\alpha}(y) \\ &= -\frac{1}{2} \int |f(x) - f(y)|^{2} d\eta^{\alpha}(x) d\eta^{\alpha}(y) < 0 \text{ (strictly as } f \text{ nonconst}) \end{split}$$

Since $\mathcal{E}_{lpha}(f) \geq f_*$ for all lpha this implies $\mathcal{E}_{lpha}(f) o f_*$ as $lpha o \infty$.

C. Totzeck (University of Wuppertal)

Consensus-based optimization (CBO)

Assume that $f \in C_b(\mathbb{R}^d, \mathbb{R}^+)$ attains a unique global minimum at x_* and let $\rho \in \mathcal{P}^{ac}(\mathbb{R}^d)$ with $x_* \in \text{supp}(\rho)$. Then we have that $\lim_{\alpha \to \infty} v_f^{\alpha} = x_*$.

Proof: (Lyapunov argument) By construction

$$\eta^{\alpha} = e^{-\alpha f(x)} \rho(x) / ||e^{-\alpha f}||_{L^{1}(\rho)} \in \mathcal{P}^{ad}(\mathbb{R}^{d}).$$
 We first show that the functional
 $\mathcal{E}_{\alpha}(f) := \int_{\mathbb{R}^{d}} f d\eta^{\alpha} \longrightarrow f_{*} = f(x_{*}) \quad \text{as} \quad \alpha \to \infty.$

Indeed, it holds

$$\begin{aligned} \frac{d}{d\alpha} \mathcal{E}_{\alpha}(f - f_{*}) &= \frac{d}{d\alpha} \int f - f_{*} d\eta^{\alpha}(x) \\ &= -\int f(x)(f(x) - f_{*}) d\eta^{\alpha}(x) + \int f(y) d\eta^{\alpha}(y) \int (f(z) - f_{*}) d\eta^{\alpha}(z) \\ &= -\int f(x)^{2} d\eta^{\alpha}(x) + \int f(x) d\eta^{\alpha}(x) \int f(y) d\eta^{\alpha}(y) \\ &= -\frac{1}{2} \int |f(x) - f(y)|^{2} d\eta^{\alpha}(x) d\eta^{\alpha}(y) < 0 \text{ (strictly as f nonconst)} \end{aligned}$$

Since $\mathcal{E}_{\alpha}(f) \geq f_*$ for all α this implies $\mathcal{E}_{\alpha}(f) \rightarrow f_*$ as $\alpha \rightarrow \infty$.

Assume that $f \in C_b(\mathbb{R}^d, \mathbb{R}^+)$ attains a unique global minimum at x_* and let $\rho \in \mathcal{P}^{ac}(\mathbb{R}^d)$ with $x_* \in \text{supp}(\rho)$. Then we have that $\lim_{\alpha \to \infty} v_f^{\alpha} = x_*$.

Proof (continued): We have $\mathcal{E}_{\alpha}(f) \to f_*$ as $\alpha \to \infty$. In the second step we show that $\eta^{\alpha} \to \delta_{x_*}$ in the sense of distributions. Let $\epsilon > 0$. By Chebyshev inequality we obtain

$$\eta^{\alpha}(\{x \in \mathbb{R}^{d} : f(x) - f_{*} \ge \epsilon\}) \le \frac{1}{\epsilon} \int_{\{f - f_{*} \ge \epsilon\}} (f - f_{*}) d\eta^{\alpha}(x)$$
$$\le \frac{1}{\epsilon} \mathcal{E}_{\alpha}(f - f_{*}) \longrightarrow 0 \quad \text{as } \alpha \to \infty.$$

Hence, $\eta^{\alpha} \rightarrow \delta_{x_*}$ which implies $v_f \rightarrow x_*$.

Remark: This is the reason why the weights in the weighted mean of CBO methods are usually chosen as $e^{-\alpha f(x)}$.

Assume that $f \in C_b(\mathbb{R}^d, \mathbb{R}^+)$ attains a unique global minimum at x_* and let $\rho \in \mathcal{P}^{ac}(\mathbb{R}^d)$ with $x_* \in \text{supp}(\rho)$. Then we have that $\lim_{\alpha \to \infty} v_f^{\alpha} = x_*$.

Proof (continued): We have $\mathcal{E}_{\alpha}(f) \to f_*$ as $\alpha \to \infty$. In the second step we show that $\eta^{\alpha} \to \delta_{x_*}$ in the sense of distributions. Let $\epsilon > 0$. By Chebyshev inequality we obtain

$$\eta^{\alpha}(\{x \in \mathbb{R}^{d} : f(x) - f_{*} \ge \epsilon\}) \le \frac{1}{\epsilon} \int_{\{f - f_{*} \ge \epsilon\}} (f - f_{*}) d\eta^{\alpha}(x)$$
$$\le \frac{1}{\epsilon} \mathcal{E}_{\alpha}(f - f_{*}) \longrightarrow 0 \quad \text{as } \alpha \to \infty.$$

Hence, $\eta^{\alpha} \rightarrow \delta_{x_*}$ which implies $v_f \rightarrow x_*$.

Remark: This is the reason why the weights in the weighted mean of CBO methods are usually chosen as $e^{-\alpha f(x)}$.

no scaling \rightarrow no consensus!

Importance of Scaled Stochasticity

There is no local best or global best involved in the dynamic:

Mean-Field system

As $N \rightarrow \infty$ the SDE system turns into the McKean non-linear Process

$$d\bar{X}_t = -\lambda(\bar{X}_t - v_f)H[f(X_t) - f(v_f)]dt + \sqrt{2}\sigma|\bar{X}_t - v_f|dB_t$$

with initial data law $(\bar{X}_0) = \rho_0$. Here the weighted average is given by

$$v_f = rac{1}{\int_{\mathbb{R}^d} \omega_f^{lpha} d
ho_t} \int_{\mathbb{R}^D} x \omega_f^{lpha} d
ho_t, \qquad
ho_t = \mathrm{law}(\bar{X}_t),$$

which can be expressed equivalently by the non-local, non-linear PDE

$$\partial_t
ho_t = \Delta(\kappa
ho_t) +
abla \cdot (\mu
ho_t),$$

with

$$\kappa = \sigma^2 |x - v_f|^2$$
 and $\mu = -\lambda(x - v_f)H[f(x) - f(v_f)]$.

Remark: Derivation is standard argument - Itô's formula and $\rho_t = \text{law}(\bar{X}_t)$.

Convergence Result [Carrillo, Choi, T, Tse 2018]

For the analysis we consider the scheme without Heaviside function.

Theorem 1 (Uniform Consensus)

Let $\rho_0 \in \mathcal{P}^2(\mathbb{R}^D)$ and $f \in Lip_{loc}(\mathbb{R}^D)$, inf f > 0 satisfy the following additional conditions:

(i) there exist constants L_f and c_u , $c_l > 0$ such that

 $|f(x) - f(y)| \le L_f(|x| + |y|)|x - y|$ for all $x, y \in \mathbb{R}^d$,

 $f(x) - \inf f \le c_u(1 + |x|^2)$ for all $x \in \mathbb{R}^d$, (bounded f)

 $f(x) - \inf f \ge c_l |x|^2$ for all |x| > M (unbounded f)

(ii) There exist constants M, c_0 , c_1 , $c_f > 0$ such that

$$\|\nabla f\|_{\infty} \leq c_f, \qquad \Delta f \leq c_0 + c_1 |\nabla f|^2 \quad in \ \mathbb{R}^D.$$

Then there exist constants α and $\lambda > 0$ such that we obtain uniform consensus for ρ_t as $t \to \infty$ arbitrary close to the global minimizer.

In other words: The invariant measure of this process is a $\delta_{\hat{x}}(x)$ positioned close to the global minimum of the objective, $\hat{x} \in B_{\epsilon}(x^*)$.

Strategy of the proof:

- (i) show concentration at x̂ for some x̂ ∈ ℝ^d:
 compute evolution of V(ρ_t) and E(ρ_t) and use Chebyshev's inequality
- (ii) show $\hat{x} \in B_{\epsilon}(x_*)$. similar idea to Laplace principle

No rigorous result for the mean-field limit

- "cured" by an compactness result
- quantitative estimate in N still open
- different amount of information on SDE / PDE level

Numerics

$N = 10, \lambda = 2, \sigma = 0.7, \alpha = 30$

Numerics

Some comments on variants

Machine learning

So far we had the dynamics given by

$$dX_t^i = -\lambda(X_t^i - v_f) H[f(X_t^i) - f(v_f)]dt + \sigma |X_t^i - v_f| dB_t^i.$$

Variant by Carrillo, Jin, Lei, Zhu (2021)

The isotropic independent diffusion is replaced by an **anisotropic** independent diffusion leading to

$$dX_t^i = -\lambda(X_t^i - v_f)dt + \sigma \operatorname{diag}(X_t^i - v_f)dB_t^i, \quad i = 1, \dots, N.$$

Moreover, they propose to use **mini-batches** for the computation of v_f and the updates.

Advantages:

- \blacktriangleright dimension independent estimates \Rightarrow robust in high dimensions
- mini-batches significantly reduce the computational cost
- mini-batches are another stochastic influence
- stay in the (sub)space of the initial particle crowd

Componentwise common noise

Based on the previous version is the following variant

Variant by Ha, Jin, Kim (2020)

The anisotropic independent diffusion is replaced by an anisotropic **common** diffusion leading to

$$dX_t^i = -\lambda(X_t^i - v_f)dt + \sigma \operatorname{diag}(X_t^i - v_f)dB_t, \quad i = 1, \dots, N.$$

Moreover, the article states a **time discrete version** of the common noise scheme.

Advantages:

thanks to the common noise, it is easier to study the distance of two particles. In fact, it holds

$$|\mathbf{E}|X^{i}(t) - X^{j}(t)|^{2} = e^{-(2\lambda - \sigma^{2})t} |\mathbf{E}|X_{0}^{i} - X_{0}^{j}|^{2}, \quad t > 0.$$

- proof of convergence on the particle level
- convergence and error analysis for the discrete scheme (elementary arguments)

Particle swarm optimization:

$$\begin{aligned} x_{n+1}^{i} &= x_{n}^{i} + v_{n+1}^{i}, \qquad v_{n+1}^{i} = v_{n}^{i} + c_{1}R_{1}(y^{i} - x_{n}^{i}) + c_{2}R_{2}(\bar{y} - x_{n}^{i}) \\ y^{i} \text{ local best, } & \bar{y} \text{ global best} \end{aligned}$$

Step 1: second order without memory

$$dX_t^i = V_t^i dt,$$

$$m \, dV_t^i = -\gamma(V_t^i) + \lambda(X_t^i - v_f) + \sigma D(X_t^i - v_f) dB$$

$$\Rightarrow \partial_t f + v \cdot \nabla_x f = \nabla_v \cdot \left(\frac{\gamma}{m} v f + \frac{\lambda}{m} (x - v_f[\rho]) f + \frac{\sigma^2}{2m^2} D(x - v_f[\rho])^2 \nabla_v f\right)$$

Step 2: approximate local and global best

$$dY_t^i = \nu(X_t^i - Y_t^i)S^{\beta}(X_t^i, Y_t^i)dt, \qquad S^{\beta}(x, y) = 1 + \tanh(\beta(f(y) - f(x))),$$
$$\bar{Y}_t = \frac{1}{\sum_{i=1}^N e^{-\alpha f(Y_t^i)}} \sum_{i=1}^N Y_t^i e^{-\alpha f(Y_t^i)}$$

Particle swarm optimization:

$$\begin{aligned} x_{n+1}^{i} &= x_{n}^{i} + v_{n+1}^{i}, \qquad v_{n+1}^{i} = v_{n}^{i} + c_{1}R_{1}(y^{i} - x_{n}^{i}) + c_{2}R_{2}(\bar{y} - x_{n}^{i}) \\ y^{i} \text{ local best}, \qquad \bar{y} \text{ global best} \end{aligned}$$

Step 1: second order without memory

$$dX_t^i = V_t^i dt,$$

$$m dV_t^i = -\gamma(V_t^i) + \lambda(X_t^i - v_f) + \sigma D(X_t^i - v_f) dB$$

$$\Rightarrow \partial_t f + v \cdot \nabla_x f = \nabla_v \cdot \left(\frac{\gamma}{m} v f + \frac{\lambda}{m} (x - v_f[\rho]) f + \frac{\sigma^2}{2m^2} D(x - v_f[\rho])^2 \nabla_v f\right)$$

Step 2: approximate local and global best

$$\begin{split} dY_t^i &= \nu(X_t^i - Y_t^i) S^{\beta}(X_t^i, Y_t^i) dt, \qquad S^{\beta}(x, y) = 1 + \tanh(\beta(f(y) - f(x))), \\ \bar{Y}_t &= \frac{1}{\sum_{i=1}^N e^{-\alpha f(Y_t^i)}} \sum_{i=1}^N Y_t^i e^{-\alpha f(Y_t^i)} \end{split}$$

Particle swarm optimization:

$$\begin{aligned} x_{n+1}^{i} &= x_{n}^{i} + v_{n+1}^{i}, \qquad v_{n+1}^{i} = v_{n}^{i} + c_{1}R_{1}(y^{i} - x_{n}^{i}) + c_{2}R_{2}(\bar{y} - x_{n}^{i}) \\ y^{i} \text{ local best, } & \bar{y} \text{ global best} \end{aligned}$$

Step 1: second order without memory

$$dX_t^i = V_t^i dt,$$

$$m dV_t^i = -\gamma(V_t^i) + \lambda(X_t^i - v_f) + \sigma D(X_t^i - v_f) dB$$

$$\Rightarrow \partial_t f + v \cdot \nabla_x f = \nabla_v \cdot \left(\frac{\gamma}{m} v f + \frac{\lambda}{m} (x - v_f[\rho]) f + \frac{\sigma^2}{2m^2} D(x - v_f[\rho])^2 \nabla_v f\right)$$

Step 2: approximate local and global best $dY_t^i = \nu(X_t^i - Y_t^i)S^{\beta}(X_t^i, Y_t^i)dt, \qquad S^{\beta}(x, y) = 1 + \tanh(\beta(f(y) - f(x))),$ $\bar{Y}_t = \frac{1}{\sum_{i=1}^N e^{-\alpha f(Y_t^i)}} \sum_{i=1}^N Y_t^i e^{-\alpha f(Y_t^i)}$

For simplicity we focus on the sphere $\boldsymbol{\Gamma}$

$$dX_t^i = -\lambda P(X_t^i)(X_t^i - v_{\alpha,\mathcal{E}}(\rho_t^N))dt + \sigma |X_t^i - v_{\alpha,\mathcal{E}}(\rho_t^N)| P(X_t^i)dB_t^i - \frac{\sigma^2}{2}(X_t^i - v_{\alpha,\mathcal{E}}(\rho_t^N))^2 \Delta \gamma(X_t^i) \nabla \gamma(X_t^i)dt,$$

with projection operator $P(x) = I - \frac{xx^T}{|x|^2}$

$$\partial_t \rho_t = \lambda \nabla_{\Gamma} \cdot (P(v)(v - v_{\alpha,\mathcal{E}}(\rho_t))\rho_t) + \frac{\sigma^2}{2} \Delta_{\Gamma}(|v - v_{\alpha,\mathcal{E}}(\rho_t)|^2 \rho_t), \quad t > 0, \ v \in \Gamma,$$

where $\nabla_{\Gamma}, \Delta_{\Gamma}$ are the divergence and Laplace-Beltrami operator corresponding to the hypersurface.

Remark:

By compactness of Γ , the mean-field limit is not a big issue.

rate in N

multi-objective problems

discrete settingsuncertainties

. . .

References:

- A consensus-based model for global optimization and its mean-field limit R. Pinnau, CT, O. Tse, S. Martin Mathematical Models and Methods in Applied Sciences 27 (1), pp. 183-204, 2017.
- An analytical framework for a consensus-based global optimization method J. A. Carrillo, Y.-P. Choi, CT, O. Tse Mathematical Models and Methods in Applied Sciences 28 (06), pp. 1037-1066, 2018.
- Survey: Trends in consensus-based optimization CT Active Particles, Volume 3, Springer International Publishing, 2022.

🖂 totzeck@uni-wuppertal.de

Advertisement: Consensus-Based Sampling (Studies Appl. Math 2022)