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Motivation

Let f : RD → R+,D ≥ 1, be a function. The problem we consider is

given by

x∗ := argmin
x∈RD

f (x).

Task: Construct an algorithm that finds the global minimizer of f !

What’s on the market?

I Genetic Algorithms

I Particle Swarm optimization

I Stochastic Gradient descent

I Ensemble methods (Kalman)

I Simulated annealing

I ....

What was observed:

I local best / global best

information

I indistiguishable particles

I no structure (O/S/PDE)

I few convergence proofs

⇒ What can we do?
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Motivation

Let f : RD → R+,D ≥ 1, be a function. The problem we consider is

given by

argmin
x∈RD

f (x).

Task: Construct an algorithm that finds the global minimizer of f !

Features we like:

I global minimum

I particle scheme

I no gradient information

I indistiguishable particles

I mean-field equation for analysis
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Outline

I Introduction to CBO
- motivation of weighted mean

- importance of scaled stochastics

- numerical illustration

I Overview & some comments
- machine learning

- component-wise common noise

- towards particle swarm optimization - Vlasov dynamic

- towards Boltzmann

- dynamics constrained to sphere
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Consensus-Based Global Optimization (CBO) [Pinnau, T, Tse, Martin 2017]

Combine swarm optimization and opinion dynamics to obtain:

dX it = −λ(X it − vf ) H[f (X it )− f (vf )]dt + σ|X it − vf |dB it , i = 1, . . . ,N,

where the weighted average vf is given by

vf =

∑N
i=1 X

i
tω

α
f (X it )∑N

i=1 ωf (α)(X it )
, with ωαf (x) = exp(−αf (x)),

supplemented with random initial data ρ0 = law(X i0). We use the

notation

f objective function,

λ drift parameter,

σ diffusion parameter,

α weight parameter,

B it Brownian Motion,

H Heaviside function.

Note:
I vf is our approximation of x∗

I interactions scale linear in N

I analysis with H ≡ 1

I assumption: unique x∗
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Global optimization

Let f : RD → R+,D ≥ 1, be a function. The problem we consider is

given by

argmin
x∈RD

f (x).

Task: Construct an algorithm that finds the global minimizer of f !

Features we like:

I global minimum

I particle scheme

I no gradient information

I indistiguishable particles

I mean-field equation for analysis
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Global optimization
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Relationship of vf and the Laplace principle

Proposition 1 (Approximation of the global minimizer)

Assume that f ∈ Cb(Rd ,R+) attains a unique global minimum at x∗ and
let ρ ∈ Pac(Rd) with x∗ ∈ supp(ρ). Then we have that lim

α→∞
vαf = x∗.

Proof: (Lyapunov argument) By construction

ηα = e−αf (x)ρ(x)/‖e−αf ‖L1(ρ) ∈ Pad(Rd). We first show that the functional

Eα(f ) :=

∫
Rd
fdηα −→ f∗ = f (x∗) as α→∞.

Indeed, it holds
d

dα
Eα(f − f∗) =

d

dα

∫
f − f∗dηα(x)

= −
∫
f (x)(f (x)− f∗)dηα(x) +

∫
f (y)dηα(y)

∫
(f (z)− f∗)dηα(z)

= −
∫
f (x)2dηα(x) +

∫
f (x)dηα(x)

∫
f (y)dηα(y)

= −1

2

∫
|f (x)− f (y)|2dηα(x)dηα(y) < 0 (strictly as f nonconst)

Since Eα(f ) ≥ f∗ for all α this implies Eα(f )→ f∗ as α→∞.
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Relationship of vf and the Laplace principle

Proposition 2 (Approximation of the global minimizer)

Assume that f ∈ Cb(Rd ,R+) attains a unique global minimum at x∗ and
let ρ ∈ Pac(Rd) with x∗ ∈ supp(ρ). Then we have that lim

α→∞
vαf = x∗.

Proof (continued): We have Eα(f )→ f∗ as α→∞.
In the second step we show that ηα → δx∗ in the sense of distributions.

Let ε > 0. By Chebyshev inequality we obtain

ηα({x ∈ Rd : f (x)− f∗ ≥ ε}) ≤
1

ε

∫
{f−f∗≥ε}

(f − f∗)dηα(x)

≤ 1

ε
Eα(f − f∗) −→ 0 as α→∞.

Hence, ηα → δx∗ which implies vf → x∗.

Remark: This is the reason why the weights in the weighted mean of

CBO methods are usually chosen as e−αf (x).
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Importance of Scaled Stochasticity

N = 4, λ = 1, σ = 0.0, α = 30

No stochastics!

level set at 9.7

N = 4, λ = 1, σ = 0.7, α = 30

with stochastics

no scaling → no consensus!
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Importance of Scaled Stochasticity
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Mean-Field Equation

There is no local best or global best involved in the dynamic:

Mean-Field system

As N →∞ the SDE system turns into the McKean non-linear Process

dX̄t = −λ(X̄t − vf )H[f (Xt)− f (vf )]dt +
√

2σ|X̄t − vf |dBt ,

with initial data law(X̄0) = ρ0. Here the weighted average is given by

vf =
1∫

Rd
ωαf dρt

∫
RD
xωαf dρt , ρt = law(X̄t),

which can be expressed equivalently by the non-local, non-linear PDE

∂tρt = ∆(κρt) +∇ · (µρt),

with κ = σ2|x − vf |2 and µ = −λ(x − vf )H[f (x)− f (vf )].

Remark: Derivation is standard argument - Itô’s formula and ρt = law(X̄t).
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Convergence Result [Carrillo, Choi, T, Tse 2018]

For the analysis we consider the scheme without Heaviside function.

Theorem 1 (Uniform Consensus)

Let ρ0 ∈ P2(RD) and f ∈ Liploc(RD), inf f > 0 satisfy the following additional

conditions:

(i) there exist constants Lf and cu, cl > 0 such that

|f (x)− f (y)| ≤ Lf (|x |+ |y |)|x − y | for all x , y ∈ Rd ,

f (x)− inf f ≤ cu(1 + |x |2) for all x ∈ Rd , (bounded f)

f (x)− inf f ≥ cl |x |2 for all |x | > M (unbounded f)

(ii) There exist constants M, c0, c1, cf > 0 such that

‖∇f ‖∞ ≤ cf , ∆f ≤ c0 + c1|∇f |2 in RD .

Then there exist constants α and λ > 0 such that we obtain uniform

consensus for ρt as t →∞ arbitrary close to the global minimizer.

In other words: The invariant measure of this process is a δx̂ (x) positioned

close to the global minimum of the objective, x̂ ∈ Bε(x∗).
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Some comments

Strategy of the proof:

(i) show concentration at x̂ for some x̂ ∈ Rd :

compute evolution of V (ρt) and E (ρt) and use Chebyshev’s

inequality

(ii) show x̂ ∈ Bε(x∗).
similar idea to Laplace principle

No rigorous result for the mean-field limit

I
”

cured“ by an compactness result

I quantitative estimate in N still open

I different amount of information on SDE / PDE level
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Numerics

N = 10, λ = 2, σ = 0.7, α = 30
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Numerics
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Some comments on variants
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Machine learning

So far we had the dynamics given by

dX it = −λ(X it − vf ) H[f (X it )− f (vf )]dt + σ|X it − vf |dB it .

Variant by Carrillo, Jin, Lei, Zhu (2021)

The isotropic independent diffusion is replaced by an anisotropic

independent diffusion leading to

dX it = −λ(X it − vf )dt + σdiag(X it − vf )dB it , i = 1, . . . ,N.

Moreover, they propose to use mini-batches for the computation of vf
and the updates.

Advantages:

I dimension independent estimates ⇒ robust in high dimensions

I mini-batches significantly reduce the computational cost

I mini-batches are another stochastic influence

I stay in the (sub)space of the initial particle crowd
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Componentwise common noise

Based on the previous version is the following variant

Variant by Ha, Jin, Kim (2020)

The anisotropic independent diffusion is replaced by an anisotropic

common diffusion leading to

dX it = −λ(X it − vf )dt + σdiag(X it − vf )dBt , i = 1, . . . ,N.

Moreover, the article states a time discrete version of the common

noise scheme.

Advantages:

I thanks to the common noise, it is easier to study the distance of

two particles. In fact, it holds

E|X i (t)− X j (t)|2 = e−(2λ−σ2)tE|X i0 − X
j
0|

2, t > 0.

I proof of convergence on the particle level

I convergence and error analysis for the discrete scheme

(elementary arguments)
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Towards Particle Swarm Optimization (PSO) [Grassi, Pareschi 2020]

Particle swarm optimization:

x in+1 = x in + v in+1, v in+1 = v in + c1R1(y i − x in) + c2R2(ȳ − x in)

y i local best, ȳ global best

Step 1: second order without memory

dX it = V it dt,

mdV it = −γ(V it ) + λ(X it − vf ) + σD(X it − vf )dB it

⇒ ∂t f + v · ∇x f = ∇v ·
(
γ

m
vf +

λ

m
(x − vf [ρ])f +

σ2

2m2
D(x − vf [ρ])2∇v f

)
Step 2: approximate local and global best

dY it = ν(X it − Y it )Sβ(X it ,Y
i
t )dt, Sβ(x , y) = 1 + tanh(β(f (y)− f (x))),

Ȳt =
1∑N

i=1 e
−αf (Y it )

N∑
i=1

Y it e
−αf (Y it )
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y i local best, ȳ global best
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mdV it = −γ(V it ) + λ(X it − vf ) + σD(X it − vf )dB it

⇒ ∂t f + v · ∇x f = ∇v ·
(
γ

m
vf +

λ

m
(x − vf [ρ])f +

σ2

2m2
D(x − vf [ρ])2∇v f

)
Step 2: approximate local and global best

dY it = ν(X it − Y it )Sβ(X it ,Y
i
t )dt, Sβ(x , y) = 1 + tanh(β(f (y)− f (x))),

Ȳt =
1∑N

i=1 e
−αf (Y it )

N∑
i=1

Y it e
−αf (Y it )
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Dynamics on hypersurface [Fornasier, Huang, Pareschi, Sünnen 2020]

For simplicity we focus on the sphere Γ

dX it = −λP(X it )(X it − vα,E(ρNt ))dt + σ|X it − vα,E(ρNt )|P(X it )dB
i
t

−
σ2

2
(X it − vα,E(ρNt ))2∆γ(X it )∇γ(X it )dt ,

with projection operator P(x) = I − xxT|x |2

∂tρt = λ∇Γ·(P(v)(v−vα,E(ρt))ρt)+
σ2

2
∆Γ(|v−vα,E(ρt)|2ρt), t > 0, v ∈ Γ ,

where ∇Γ,∆Γ are the divergence and Laplace-Beltrami operator

corresponding to the hypersurface.

Remark:

By compactness of Γ, the mean-field limit is not a big issue.
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Outlook & open problems

I multi-modal objectives

I rate in N

I multi-objective problems

I discrete settings

I uncertainties

I ...
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Thank you for your attention!
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