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Random Partial Differential Equations

• Consider general PDE with solution 𝑢 ∈ U and coefficient(s) 𝑎 ∈ A given
by

F (𝑢, 𝑎) = 0

• Running example: Elliptic diffusion equation on compact 𝐷 ⊆ R2,

−∇ · (e𝑎∇𝑢) = 𝑓 , 𝑢
��
𝜕𝐷

≡ 0

with U = 𝐻1
0 (𝐷) and A = 𝐿∞ (𝐷) (weak form)

• Often (log diffusion) coefficient 𝑎 not precisely known in practice

• UQ approach:
1 Describe uncertainty about 𝑎 by probability measure 𝜇 on A

2 Compute resulting probability distribution 𝜈 on U of random solution 𝑢 or
quantity of interest 𝑞(𝑢) where 𝑞 : U → R
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UQ Scheme

But: Distribution 𝜇 of 𝑎 often obtained by estimation or subjective knowledge

Question
Can we control the effect of perturbations of 𝜇 on output distribution 𝜈?
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Motivational Example

source: Sandia National Labs

• Simulate groundwater flow, here: at deep
geological repository

• Computational model given by PDE

−∇ · (e𝑎∇𝑢) = 𝑓

• Available data: ≈ 60 measurements of
(a) log conductivity 𝑎

(b) pressure head 𝑢

• Of interest: exit time 𝑞exit of accidentally
released radionuclides

UQ approach:
1 Model uncertain spatially varying log conductivity 𝑎 by Gaussian process

2 Use available data to estimate stochastic model for 𝑎

3 Compute resulting distribution of exit times 𝑞exit
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Gaussian random fields

• We assume 𝑎 ∼ N(𝑚, 𝑐) with mean and covariance function 𝑚 and 𝑐

E [𝑎(𝑥)] = 𝑚(𝑥),

Cov[𝑎(𝑥), 𝑎(𝑦)] = 𝑐(𝑥, 𝑦),

𝑎(𝑥) ∼ N (𝑚(𝑥), 𝑐(𝑥, 𝑥))

• Common parametrized class: Matérn covariance functions

𝑐𝜎2 ,𝜌,𝑘+ 1
2
(𝑥, 𝑦) := 𝜎2 e−

√
2𝑘+1
𝜌

|𝑥−𝑦 |
𝑃𝑘

(√
2𝑘 + 1

𝜌
|𝑥 − 𝑦 |

)
with variance 𝜎2 > 0, correlation length 𝜌 > 0, smoothness 𝑘 + 1

2 , 𝑘 ∈ N0
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Gaussian random fields

• We assume 𝑎 ∼ N(𝑚, 𝑐) with mean and covariance function 𝑚 and 𝑐

• Common parametrized class: Matérn covariance functions

𝑐𝜎2 ,𝜌,𝑘+ 1
2
(𝑥, 𝑦) := 𝜎2 e−

√
2𝑘+1
𝜌

|𝑥−𝑦 |
𝑃𝑘

(√
2𝑘 + 1

𝜌
|𝑥 − 𝑦 |

)
with variance 𝜎2 > 0, correlation length 𝜌 > 0, smoothness 𝑘 + 1

2 , 𝑘 ∈ N0

• In practice, we obtain estimates 𝜎̂2, 𝜈̂, 𝜌̂ of the parameters given
observational data 𝑎(𝑥 𝑗 ), 𝑗 = 1, . . . , 𝑛 (e.g., by maximum-likelihood)

Motivational Question
How does estimation error or different choice of parameters, e.g., for 𝜎2, affect
the output of the UQ analysis?



Solution Operator

• Consider solution operator 𝑆 : A → U of PDE mapping coefficient 𝑎 to
unique solution 𝑢 of F (𝑢, 𝑎) = 0

⇒ Distribution 𝜈 of random solution 𝑢 is pushforward measure

𝜈 = 𝑆∗𝜇, 𝜈(𝐴) = 𝜇(𝑆−1 (𝐴)), 𝐴 ⊆ U

• Often 𝑆 (locally) Lipschitz: with monotonically increasing Lip𝑆 : R+ → R+

‖𝑆(𝑎) − 𝑆(𝑎̂)‖U ≤ Lip𝑆 (𝑟) ‖𝑎 − 𝑎̂‖A ∀‖𝑎‖A , ‖𝑎̂‖A ≤ 𝑟

• Running example: For elliptic problem −∇ · (e𝑎∇𝑢) = 𝑓 we have

‖𝑢 − 𝑢̂‖𝐻1
0 (𝐷) = ‖𝑆(𝑎) − 𝑆(𝑎̂)‖𝐻1

0 (𝐷) ≤ 𝑐 𝑓 e3𝑟 ‖𝑎 − 𝑎̂‖𝐿∞ (𝐷)

• Does Lipschitz continuity of 𝑆 yield Lipschitz continuity of 𝜇 ↦→ 𝑆∗𝜇?
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Sensitivity in TV Distance

• Consider total variation distance

𝑑TV (𝜇, 𝜇) = sup
𝐴⊆A

|𝜇(𝐴) − 𝜇(𝐴) |

• Then, for any measurable 𝑆 : A → U we have global Lipschitz continuity
of 𝜇 ↦→ 𝑆∗𝜇:

𝑑TV (𝑆∗𝜇, 𝑆∗𝜇) ≤ 𝑑TV (𝜇, 𝜇) ,

• But: TV distance not suited for measures on infinite-dimensional spaces,
e.g., for Gaussian measures associated to Gaussian processes we have

𝑑TV
(
N(𝑚,𝐶),N(𝑚, 𝜎2𝐶)

)
= 1 if 𝜎 ≠ 1,

i.e., any estimation error in variance parameter 𝜎2 yields maximal distance
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Wasserstein Distance

• Instead, we consider the 𝑝-Wasserstein distance

W𝑝 (𝜇, 𝜇) := inf
𝑋∼𝜇, 𝑋∼𝜇

E
[
‖𝑋 − 𝑋 ‖ 𝑝

]1/𝑝
, 𝑝 ≥ 1.

• Also reasonable for measures which are singular w. r. t. each other

W𝑝 (𝛿𝑎, 𝛿𝑎) = ‖𝑎 − 𝑎̂‖

• Allows dual representation, e.g., for W1 we have by Kantorovich–Rubinstein

W1 (𝜇, 𝜇) = sup
𝑓 : A→R, Lip 𝑓 ≤1

��E𝜇 [ 𝑓 ] − E𝜇 [ 𝑓 ]
��

• W2-distance of Gaussian measures explicitly known [Gelbrich, 1990],

W2

(
N(𝑚,𝐶),N(𝑚,𝐶)

)2
= ‖𝑚 − 𝑚‖2 + tr𝐶 + tr𝐶 − 2 tr

(√
𝐶𝐶

√
𝐶

)1/2
,

and, e.g., W𝑝

(
N(𝑚, 𝜎2𝐶),N(𝑚, 𝜎̂2𝐶)

)
≤ |𝜎 − 𝜎̂ |
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Sensitivity in Wasserstein Distance

• [Ernst, Pichler, S., 2020]: If 𝑆 : A → U is globally Lipschitz with Lipschitz
constant Lip𝑆, then for any probability measures 𝜇, 𝜇 on A we have

W𝑝 (𝑆∗𝜇, 𝑆∗𝜇) ≤ Lip𝑆 W𝑝 (𝜇, 𝜇) , 𝑝 ≥ 1.

• Applicable if 𝑆 is bounded and linear, e. g.,

𝑓 ↦→ 𝑢 = 𝑆( 𝑓 ) for PDE − ∇ · (e𝑎∇𝑢) = 𝑓

• But: For general locally Lipschitz forward maps 𝑆 we do not obtain global
Lipschitz continuity of 𝜇 ↦→ 𝑆∗𝜇

Example: 𝜇 = N(0, 1), 𝜇𝜖 = N(0, 1 + 𝜖) and 𝑆(𝑥) := e𝑥 , 𝑥 ∈ R, then

W𝑝 (𝑆∗𝜇, 𝑆∗𝜇𝜖 )
W𝑝 (𝜇, 𝜇𝜖 )

𝜖→+∞−−−−−→ +∞
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Sensitivity for Local Lipschitz Forward Maps

However, we can recover local Lipschitz continuity of 𝜇 ↦→ 𝑆∗𝜇 under
suitable assumptions:

Theorem ([Ernst, Pichler, S., 2020])
Let 𝑆 : A → U be locally Lipschitz,

‖𝑆(𝑎) − 𝑆(𝑎̂)‖U ≤ Lip𝑆 (𝑟) ‖𝑎 − 𝑎̂‖A ∀‖𝑎‖A , ‖𝑎̂‖A ≤ 𝑟.

Then for any 𝜇, 𝜇 with

E𝜇

[
Lip2𝑝

𝑆
(‖𝑎‖A )

]
, E𝜇

[
Lip2𝑝

𝑆
(‖𝑎‖A )

]
≤ 𝐶 < ∞

we have
W𝑝 (𝑆∗𝜇, 𝑆∗𝜇) ≤ 2𝐶1/2𝑝 W2𝑝 (𝜇, 𝜇) .

Which measures 𝜇, 𝜇 satisfy the integrability assumption for Lip𝑆 (𝑟) ∈ O (e𝛽𝑟 )?
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Special case: Gaussian random fields

• Recall Gaussian random fields 𝑎 ∼ N(𝑚, 𝑐) with continuous mean
function 𝑚 ∈ 𝐶 (𝐷), 𝐷 ⊂ R𝑑 compact, and Matérn covariance functions

𝑐𝜎2 ,𝜌,𝑘+ 1
2
(𝑥, 𝑦) := 𝜎2e−

√
2𝑘+1
𝜌

|𝑥−𝑦 | 𝑘!

(2𝑘)!

𝑘∑︁
𝑖=0

(𝑘 + 𝑖)!
𝑖!(𝑘 − 𝑖)!

(
2

√
2𝑘 + 1

𝜌
|𝑥 − 𝑦 |

) 𝑘−𝑖

• We consider the following subclass G of Gaussian measures on 𝐶 (𝐷)

G = G (M ,C ) := {N(𝑚, 𝑐) : 𝑚 ∈ M , 𝑐 ∈ C }

M = {𝑚 : ‖𝑚‖𝐶 (𝐷) ≤ 𝑟M }

C =

{
𝑐𝜎2 ,𝜌,𝑘+ 1

2
: 𝜎 ≤ 𝜎max, 𝜌 ≥ 𝜌min, 𝑘 ∈ {0, . . . , 𝑘max}

}
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• [Ernst, Pichler, S., 2020]: By means of Fernique’s theorem and Dudley’s
entropy bound we have

sup
𝜇∈G

E𝜇

[
exp

(
𝛽 ‖𝑎‖𝐶 (𝐷)

) ]
< ∞, 𝛽 > 0.

Theorem ([Ernst, Pichler, S., 2020])
Consider G = G (M ,C ) and locally Lipschitz 𝑆 : 𝐶 (𝐷) → U with
Lip𝑆 (𝑟) ∈ O (e𝛽𝑟 ) for a 𝛽 > 0. Then, there exists a constant 𝐶 = 𝐶 (G ) < ∞
such that

W𝑝 (𝑆∗𝜇, 𝑆∗𝜇) ≤ 𝐶 W2𝑝 (𝜇, 𝜇) ∀𝜇, 𝜇 ∈ G .

• Example: For elliptic problem −∇ · (e𝑎∇𝑢) = 𝑓 with lognormal diffusion
coefficients we have for 𝜇 = N(𝑚, 𝑐𝜎2 ,𝜌,𝑘+ 1

2
), 𝜇 = N(𝑚, 𝑐 𝜎̂2 ,𝜌,𝑘+ 1

2
)

W𝑝 (𝑆∗𝜇, 𝑆∗𝜇) ≤ 𝐶𝜎max
|𝜎 − 𝜎̂ | ∀𝜎, 𝜎̂ ≤ 𝜎max
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Risk Functionals

• Consider now scalar quantity of interest 𝑞 : U → R of solution 𝑢 of PDE

• Tool to evaluate uncertainty about quantity 𝑞(𝑢): risk functionals

• Risk functionals R assign real numbers R(𝑋) ∈ R to (real-valued) random
variables 𝑋 which quantify the risk associated with their random outcomes

Examples:
• Expectation: R(𝑋) = E [𝑋]

• Value-at-Risk (VaR): R(𝑋) := 𝐹−1
𝑋

(1 − 𝛼), 𝛼 ∈ (0, 1)

• Average Value-at-Risk (AVaR): R(𝑋) = 1
𝛼

∫ 1

1−𝛼 𝐹−1
𝑋

(𝑡)d𝑡, 𝛼 ∈ (0, 1)

• Spectral risk functional: R(𝑋) =
∫ 1

0
𝑤(𝑡) 𝐹−1

𝑋
(𝑡)d𝑡, 𝑤 ∈ 𝐿1(R+)
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Coherent Risk Functionals [Artzner et al., 1997]

• Common class of risk functionals which are

1 monotone: 𝑋
a.s.
≤ 𝑌 ⇒ R(𝑋) ≤ R(𝑌 )

2 cash-invariant: R(𝑋 − 𝑐) = R(𝑋) − 𝑐 for any 𝑐 ∈ R
3 subadditive: R(𝑋 + 𝑌 ) ≤ R(𝑋) + R(𝑌 )
4 positive homogeneous: R(𝜆𝑋) = 𝜆R(𝑋) for any 𝜆 > 0

• Spectral risk functionals such as AVaR are coherent, but VaR is not

Dual representation
By means of the Fenchel–Moreau theorem

R(𝑋) = sup
𝐻 ∈H

E [𝐻 𝑋] , H ⊆ {𝐻 : 𝐻 ≥ 0 a. s. and E [𝐻] = 1},

i.e., 𝐻 basically represent probability density functions.
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U
,
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we have for any coherent risk functional R that

|R(𝑞(𝑢)) − R(𝑞(𝑢̂)) | ≤ 𝐶R, 𝑝,𝑞 W𝑝 (𝜈, 𝜈̂)𝛽 , 𝑝 ≥ 1

where 𝑢 ∼ 𝜈 and 𝑢̂ ∼ 𝜈̂.
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Sensitivity of Risk Functionals for random PDE

Can combine now previous results and obtain

Corollary ([Ernst, Pichler, S., 2020])
For Hölder-continuous 𝑞 : U → R and locally Lipschitz 𝑆 : A → U we have for
any spectral risk measures R and suitable measures 𝜇, 𝜇 on A

|R(𝑞(𝑢)) − R(𝑞(𝑢̂)) | ≤ 𝐶𝑞,𝑤,𝑝 W2𝑝 (𝜇, 𝜇)𝛽 , 𝑝 ≥ 1,

where 𝑢 = 𝑆(𝑎), 𝑎 ∼ 𝜇, and 𝑢̂ = 𝑆(𝑎̂), 𝑎̂ ∼ 𝜇.

Example: For elliptic problem −∇ · (e𝑎∇𝑢) = 𝑓 with lognormal diffusion
coefficients we have for 𝑎 ∼ N(𝑚, 𝑐𝜎2 ,𝜌,𝑘+ 1

2
), 𝑎̂ ∼ N(𝑚, 𝑐 𝜎̂2 ,𝜌,𝑘+ 1

2
)

|AVaR(𝑞(𝑢)) −AVaR(𝑞(𝑢̂)) | ≤ 𝐶𝜎max
|𝜎 − 𝜎̂ |𝛽 ∀𝜎, 𝜎̂ ≤ 𝜎max

for Hölder-continuous 𝑞 : 𝐻1
0 (𝐷) → R
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Bayesian Inverse Problems (BIP)

• UQ approach to inverse problem

𝑦 = 𝐺 (𝑎) + 𝜀, 𝐺 : A → R𝑘 , 𝜀 ∼ N(0, Σ),

e.g., 𝐺 = 𝑂 ◦ 𝑆 with observational map 𝑂 : U → R𝑘 applied to 𝑢 = 𝑆(𝑎)

• Update prior measure 𝜇 on A for uncertain 𝑎 by conditioning 𝜇 on data

• Bayes’ rule: Posterior measure of 𝑎 ∼ 𝜇 given data 𝑦 = 𝐺 (𝑎) + 𝜀 is

𝜇Φ (d𝑎) ∝ e−Φ(𝑎) 𝜇(d𝑎), Φ(𝑎) := 1

2
‖𝑦 − 𝐺 (𝑎)‖2

Σ−1 .

• BIP well-posed, i.e., local Lipschitz dependence of 𝜇Φ on data 𝑦 ∈ R𝑘
[Stuart, 2010], [Hosseini, 2017], [Sullivan, 2017], [Latz, 2020],...

• Question: How sensitively depends 𝜇Φ on (subjective) choice of 𝜇 ?
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Sensitivity of Bayesian Inversion

Theorem (informal, [S., 2020])
For 𝑑 being TV, Hellinger, or 1-Wasserstein distance or KL divergence we have
under suitable assumptions a locally Lipschitz continuity:

𝑑 (𝜇Φ, 𝜇Φ) ≤ 𝐶Φ (𝑟) 𝑑 (𝜇, 𝜇), if 𝑑 (𝜇, 𝜇) ≤ 𝑟

But: 𝐶Φ (𝑟) → ∞ as data 𝑦 more informative, e.g., noise 𝜀 → 0
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Wasserstein Distance

Theorem
1 If Φ : A → R+ is continuous, we have continuity in 𝑝-Wasserstein distance,

i.e.,

lim
𝑛→∞

W𝑝

(
𝜇, 𝜇 (𝑛)

)
= 0 ⇒ lim

𝑛→∞
W𝑝

(
𝜇Φ, 𝜇

(𝑛)
Φ

)
= 0, 𝑝 ≥ 1.

2 If A is bounded and e−Φ : A → R+ globally Lipschitz, then

W1(𝜇Φ, 𝜇Φ) ≤
𝐶Φ

𝑍2
W1 (𝜇, 𝜇) ∀𝜇 : W1 (𝜇, 𝜇) ≤

𝑍

2LipΦ

where 𝑍 :=
∫

e−Φd𝜇 denotes normalizing constant for 𝜇Φ.

Remark: [Diaconis & Freedman, 1986] studied Fréchet derivative 𝜕𝑇Φ (𝜇) of
mapping 𝑇Φ (𝜇) := 𝜇Φ w.r.t. TV distance topology and obtained

‖𝜕𝑇Φ (𝜇)‖ ' 1

𝑍
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where 𝑍 :=
∫

e−Φd𝜇 denotes normalizing constant for 𝜇Φ.
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Summary

• Locally Lipschitz sensitivity of uncertainty propagation w.r.t. Wasserstein
distance for locally Lipschitz forward maps

• Also locally Hölder sensitivity of risk functionals for Hölder-continuous
quantities of interest

• Similar results for sensitivity of Bayesian inversion w.r.t. choice of prior (or
perturbations of log-Likelihood Φ)
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