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@ Uncertainty Propagation
® Risk Functionals

© Bayesian Inversion
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Random Partial Differential Equations

® Consider general PDE with solution u € % and coefficient(s) a € < given
by
F(u,a) =0

® Running example: Elliptic diffusion equation on compact D C R?,

-V (V) = . =0

“|aD

with % = H}(D) and & = L*(D) (weak form)
® Often (log diffusion) coefficient a not precisely known in practice

* UQ approach:
@ Describe uncertainty about a by probability measure u on &

® Compute resulting probability distribution v on % of random solution u or
quantity of interest g(u) where g: Z - R
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UQ Scheme

E

PD
- Fu,a) =0

Input a Output u

But: Distribution u of a often obtained by estimation or subjective knowledge

Question

Can we control the effect of perturbations of u on output distribution v?



Motivational Example

® Simulate groundwater flow, here: at deep
geological repository

® Computational model given by PDE

-V .- (eVu)=f

source: Sandia National Labs
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Motivational Example

WIPP simulation: ® Simulate groundwater flow, here: at deep
%108 particle path

a505 geological repository
e ® Computational model given by PDE
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=
=)
e ® Available data: = 60 measurements of
857 (a) log conductivity a
605 6.1 615 6.2 (b) pressure head u

UTM Easting  x10°

Of interest: exit time gexit of accidentally
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Motivational Example

Simulate groundwater flow, here: at deep
geological repository

WIPP simulation:
«10° particle paths

3.595

@
o
©
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Computational model given by PDE

@
o
@
o

-V .- (eVu)=f

UTM Northing
@
3

©
o
N
o

Available data: = 60 measurements of

©
o
N

(a) log conductivity a

605 61 615 62 (b) pressure head u
UTM Easting  x10°

Of interest: exit time gexit of accidentally
released radionuclides
UQ approach:
@ Model uncertain spatially varying log conductivity a by Gaussian process
® Use available data to estimate stochastic model for a
©® Compute resulting distribution of exit times geyit



Gaussian random fields

® We assume a ~ N(m,c) with mean and covariance function m and ¢

Ela(x)] = m(x),
Covla(x),a(y)] = c(x,y),
a(x) ~ N (m(x), c(x,x))
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Gaussian random fields

® We assume a ~ N(m,c) with mean and covariance function m and ¢

e Common parametrized class: Matérn covariance functions

(_V%H |x_y|)
P

2 _\/2k+1|x_y|
Cozpirt(Xy) =0 e 7 Px

with variance o2 > 0, correlation length p > 0, smoothness k + % k € Ny

® In practice, we obtain estimates o2, v, p of the parameters given
observational data a(x;),j =1,...,n (e.g., by maximum-likelihood)

Motivational Question

How does estimation error or different choice of parameters, e.g., for o2, affect
the output of the UQ analysis?
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Solution Operator

e Consider solution operator S: .o/ — % of PDE mapping coefficient a to
unique solution u of % (u,a) =0

= Distribution v of random solution u is pushforward measure

v =S, v(A) = u(STHA)), Acu

e Often S (locally) Lipschitz: with monotonically increasing Lipg: Ry — Ry

1S(a) - S(@)ll < Lips(r) lla=aller  Vlalle. lalles <r

® Running example: For elliptic problem -V - (e?Vu) = f we have

llu = @llg2 oy = 1S(@) = S@llgzpy < cre” lla=allrs)

® Does Lipschitz continuity of S yield Lipschitz continuity of u +— S, u?
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Sensitivity in TV Distance

e Consider total variation distance
drv (u, i) = sup |u(A) — g(A)]
ACof

® Then, for any measurable S: & — %/ we have global Lipschitz continuity
of u - S,

dtv (Sept, Sit) < dvv (u,p),

e But: TV distance not suited for measures on infinite-dimensional spaces,
e.g., for Gaussian measures associated to Gaussian processes we have

drv (N(m, C),N(m,c>C)) = 1 if o #1,

i.e., any estimation error in variance parameter o2 yields maximal distance
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Wasserstein Distance

® |nstead, we consider the p-Wasserstein distance

~ 11/p
Wyu @ = il E[lIX-%I1?|",  pz1
X~u, X~p

® Also reasonable for measures which are singular w. r. t. each other
W) (6a,03) = lla —al
® Allows dual representation, e.g., for Wy we have by Kantorovich-Rubinstein

Wi (u, ) = sup |E. [f1-Ez /]|

[+ />R, Lipp<1

® Wo-distance of Gaussian measures explicitly known [Gelbrich, 1990],

\2 _ _ 1/2
W, (N(m,C),N(n’i,C)) =||m—n’i||2+trC+trC—2tr(\/EC‘/E) ,

and, e.g., W, (N(m,c%C),N(m,52C)) < |o — 7|
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Sensitivity in Wasserstein Distance

® [Ernst, Pichler, S., 2020]: If S: &7 — % is globally Lipschitz with Lipschitz
constant Lipg, then for any probability measures y, i on &/ we have

W, (Sapt, Sift) < Lipg W), (i, 1), p =1

e Applicable if S is bounded and linear, e. g.,
f —»u=S8(f) forPDE -V-(eVu)=f
® But: For general locally Lipschitz forward maps S we do not obtain global
Lipschitz continuity of u — S.u
Example: u=N(0,1), ue =N(0,1+€) and S(x):=e", x € R, then

W (Sit, Sipte)  emtoo
W, (1, pe)
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Sensitivity for Local Lipschitz Forward Maps

However, we can recover local Lipschitz continuity of u +— S.u under
suitable assumptions:

Theorem ([Emst, Pichler, S., 2020])

Let S: o7 — % be locally Lipschitz,
IS(a) = S@ll < Lips(r) lla-alles  Valle,llalle <r.
Then for any u, i with
E, |Lip3” lallr)| . Bz |Lind? (llallen)| < € < o0
we have

W, (Supt, Suf) < 2CY2P Wo), (1, 17) -

Which measures u, i1 satisfy the integrability assumption for Lipg(r) € ¢/(e87)?
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function m € C(D), D c R? compact, and Matérn covariance functions
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Special case: Gaussian random fields

® Recall Gaussian random fields @ ~ N(m, ¢) with continuous mean
function m € C(D), D c R? compact, and Matérn covariance functions

k—i
VBT (k+i)! [ V2k+1
lx=y| (2k)' Z ( |x—y|)

— 2 >
C<r2,p,1<+%(X’)’) =o0%e f Ak = D)1

® We consider the following subclass 4 of Gaussian measures on C(D)

G =4(M,6) :={N(m,c): me .#,ceEC}
A =A{m: |Imllcp) < r.u}

G = {Co'z’p’k-f-% 10 < Omax> P 2 Pmins k € {0, cees kmax}}
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® [Ernst, Pichler, S., 2020]: By means of Fernique's theorem and Dudley’s
entropy bound we have

sup Eu [exp (B llallcpy)] < oo, B> 0.

HEY

Theorem ([Ernst, Pichler, S., 2020])

Consider 4 = 9 (.#,%€¢) and locally Lipschitz S: C(D) — % with

Lipg(r) € 0(ef") fora B> 0. Then, there exists a constant C = C(¥) < oo
such that

W, (S, Sift) < C Wo,, (u, 1) Yu,ii€9.

® Example: For elliptic problem -V - (e“Vu) = f with lognormal diffusion
coefficients we have for pu=N(m.,c 2, p,1), f=N(m,cz2 ,401)

W, (S.u, Siit) < Cq,,, lo =0 Vo, < Omax
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Risk Functionals

¢ Consider now scalar quantity of interest g: % — R of solution u of PDE

® Tool to evaluate uncertainty about quantity ¢g(u): risk functionals

® Risk functionals R assign real numbers R(X) € R to (real-valued) random
variables X which quantify the risk associated with their random outcomes

Examples:
® Expectation: R(X) = E[X]

* Value-at-Risk (VaR): R(X):=Fg'(1-a), ac(0,1)
® Average Value-at-Risk (AVaR): R(X) = %.fll_a Fl(ndr, a€(0,1)

* Spectral risk functional:  R(X) = [ w(r) Fg'(dr, w e L'(R,)



Risk Functionals — lllustration

E[X] VaR(X)  AVaR(X)



Risk Functionals — lllustration

E[X] VaR(X)  AVaR(X)

Goal

Control effect of underlying distribution u ~ v on risk value R(g(u))
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Coherent Risk Functionals [Artzner et al., 1997

e Common class of risk functionals which are

©® monotone: X<y = RX) <R®Y)

@® cash-invariant: R(X-¢)=R(X)-c foranyceR
© subadditive: R(X+Y) < R(X)+R(Y)
@ positive homogeneous: R(AX) = AR(X) forany1>0

e Spectral risk functionals such as AVaR are coherent, but VaR is not

Dual representation

By means of the Fenchel-Moreau theorem

R(X) = sup E[H X], A C{H: H>0a.s.and E[H] =1},
Hesr

i.e., H basically represent probability density functions.
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Coherent Risk Functionals [Artzner et al., 1997

e Common class of risk functionals which are

©® monotone: X<y = RX) <R®Y)

@® cash-invariant: R(X-¢)=R(X)-c foranyceR
© subadditive: R(X+Y) < R(X)+R(Y)
O positive homogeneous: R(1X) = AR(X) forany A>0

® Spectral risk functionals such as AVaR are coherent, but VaR is not

Theorem ([Ernst, Pichler, S., 2020])

For Holder-continuous quantity ¢: % — R, i.e., |q(u) — ()| < Cyllu - ﬁllg/,
B > 0, we have for any coherent risk functional R that

IR(q(u)) = R(g@)| < Crpg Wp n9)F,  p=1

where u ~ v and u ~ V.
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Sensitivity of Risk Functionals for random PDE

Can combine now previous results and obtain

Corollary ([Ernst, Pichler, S., 2020])

For Holder-continuous g: %2 — R and locally Lipschitz S: .« — % we have for
any spectral risk measures R and suitable measures y, i on &7

IR(q(1) = R(g(@)] < Cqow.p Wap (w, @,  p=1,

where u = S(a), a ~ u, and u = S(a), a ~ i.

Example: For elliptic problem -V - (e“Vu) = f with lognormal diffusion
coefficients we have for a ~ N(m, ¢z, 41), @~N(m,cz2 441)

|[AVaR(g(u)) — AVaR(¢(@))| < C o -0 V0,7 < 0max

Omax

for Holder-continuous ¢: H}(D) — R
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Bayesian Inverse Problems (BIP)

¢ UQ approach to inverse problem
y=G(a)+e¢, G: o/ — RK, e ~N(0,%),

e.g., G = O o S with observational map O: % — R applied to u = S(a)

e Update prior measure u on & for uncertain a by conditioning u on data

Bayes’ rule: Posterior measure of a ~ u given data y =G(a) +¢& is

1
po(da) o« e pu(da),  ®(a):= Sy - G(@)l3--

BIP well-posed, i.e., local Lipschitz dependence of ug on data y € R*
[Stuart, 2010], [Hosseini, 2017], [Sullivan, 2017], [Latz, 2020],...

® Question: How sensitively depends pg on (subjective) choice of u 7
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Theorem (informal, [s., 2020])

For d being TV, Hellinger, or 1-Wasserstein distance or KL divergence we have
under suitable assumptions a locally Lipschitz continuity:

d(/J(I),/TICI)) < Cd’(r) d(“’ ﬁ)’ if d(ﬂ’m <r



Sensitivity of Bayesian Inversion

Bayes' rule

dpoe ~ exp(-®) du

Posterior pao

Prior

Theorem (informal, [s., 2020])

For d being TV, Hellinger, or 1-Wasserstein distance or KL divergence we have
under suitable assumptions a locally Lipschitz continuity:

d(/J(I),/TICI)) < Cd’(r) d(“’ ﬁ)’ if d(ﬂ’m <r

But: Co(r) — oo as data y more informative, e.g., noise & — 0



Wasserstein Distance

@ If ®: .o/ — R, is continuous, we have continuity in p-Wasserstein distance,
ie.,
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Wasserstein Distance

@ If ®: .o/ — R, is continuous, we have continuity in p-Wasserstein distance,
ie.,
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@® If o7 is bounded and e ®: &/ — R, globally Lipschitz, then
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where Z := fe“bdu denotes normalizing constant for ue.



Wasserstein Distance

@ If ®: &/ — R, is continuous, we have continuity in p-Wasserstein distance,
ie.,

hmw( <)=0 = lim W, (yq,,yfp>)_0, p>1.

n—oo

@® If o7 is bounded and e ®: &/ — R, globally Lipschitz, then
. Z
Wi (ko flo) < —5 Wi () VE: Wi(mf) € =
2L|p¢,

where Z := fe“bdu denotes normalizing constant for ue.

Remark: [Diaconis & Freedman, 1986] studied Fréchet derivative dTg (u) of
mapping Te (1) := pue w.r.t. TV distance topology and obtained

0T (Il = =



® Locally Lipschitz sensitivity of uncertainty propagation w.r.t. Wasserstein
distance for locally Lipschitz forward maps

® Also locally Hélder sensitivity of risk functionals for Hélder-continuous
quantities of interest

® Similar results for sensitivity of Bayesian inversion w.r.t. choice of prior (or
perturbations of log-Likelihood ®)

More information:

[1] O. Ernst, A. Pichler, B. Sprungk. Sensitivity of Uncertainty Propagation for the
Elliptic Diffusion Equation. SIAM/ASA Journal on Uncertainty Quantification (to
appear), 2022.

[2] B. Sprungk. On the local Lipschitz stability of Bayesian inverse problems. Inverse
Problems 36, 2020.



