

Björn Sprungk Faculty of Mathematics and Computer Science Research Group Uncertainty Quantification

Sensitivity of uncertainty quantification and Bayesian inverse problems

Joint work with Oliver Ernst and Alois Pichler (TU Chemnitz)

June 8th, 2022

GDR MASCOT-NUM Annual Meeting, Clermont Ferrand

1 Uncertainty Propagation

2 Risk Functionals

3 Bayesian Inversion

• Consider general PDE with solution $u \in \mathcal{U}$ and coefficient(s) $a \in \mathscr{A}$ given by

$$\mathscr{F}(u,a) = 0$$

• **Running example**: Elliptic diffusion equation on compact $D \subseteq \mathbb{R}^2$,

$$-\nabla \cdot (\mathbf{e}^{\boldsymbol{a}} \nabla u) = f, \qquad u\Big|_{\partial D} \equiv 0$$

with $\mathscr{U} = H_0^1(D)$ and $\mathscr{A} = L^{\infty}(D)$ (weak form)

• Consider general PDE with solution $u \in \mathcal{U}$ and coefficient(s) $a \in \mathscr{A}$ given by

$$\mathscr{F}(u,a) = 0$$

• **Running example**: Elliptic diffusion equation on compact $D \subseteq \mathbb{R}^2$,

$$-\nabla \cdot (\mathbf{e}^{\boldsymbol{a}} \nabla u) = f, \qquad u\Big|_{\partial D} \equiv 0$$

with $\mathscr{U} = H_0^1(D)$ and $\mathscr{A} = L^{\infty}(D)$ (weak form)

• Often (log diffusion) coefficient *a* not precisely known in practice

• Consider general PDE with solution $u \in \mathcal{U}$ and coefficient(s) $a \in \mathscr{A}$ given by

$$\mathscr{F}(u,a) = 0$$

• **Running example**: Elliptic diffusion equation on compact $D \subseteq \mathbb{R}^2$,

$$-\nabla \cdot (\mathbf{e}^a \nabla u) = f, \qquad u\Big|_{\partial D} \equiv 0$$

with $\mathscr{U} = H_0^1(D)$ and $\mathscr{A} = L^{\infty}(D)$ (weak form)

• Often (log diffusion) coefficient *a* not precisely known in practice

• UQ approach:

1 Describe uncertainty about a by probability measure μ on \mathscr{A}

• Consider general PDE with solution $u \in \mathcal{U}$ and coefficient(s) $a \in \mathscr{A}$ given by

$$\mathscr{F}(u,a) = 0$$

• **Running example**: Elliptic diffusion equation on compact $D \subseteq \mathbb{R}^2$,

$$-\nabla \cdot (\mathbf{e}^{a} \nabla u) = f, \qquad u\Big|_{\partial D} \equiv 0$$

with $\mathscr{U} = H_0^1(D)$ and $\mathscr{A} = L^{\infty}(D)$ (weak form)

• Often (log diffusion) coefficient *a* not precisely known in practice

• UQ approach:

- **1** Describe uncertainty about a by probability measure μ on \mathscr{A}
- 2 Compute resulting probability distribution ν on \mathscr{U} of random solution u

• Consider general PDE with solution $u \in \mathcal{U}$ and coefficient(s) $a \in \mathscr{A}$ given by

$$\mathscr{F}(u,a) = 0$$

• **Running example**: Elliptic diffusion equation on compact $D \subseteq \mathbb{R}^2$,

$$-\nabla \cdot (\mathbf{e}^{a} \nabla u) = f, \qquad u\Big|_{\partial D} \equiv 0$$

with $\mathscr{U} = H_0^1(D)$ and $\mathscr{A} = L^{\infty}(D)$ (weak form)

• Often (log diffusion) coefficient *a* not precisely known in practice

• UQ approach:

- **1** Describe uncertainty about a by probability measure μ on \mathscr{A}
- 2 Compute resulting probability distribution ν on 𝔄 of random solution u or quantity of interest q(u) where q: 𝔄 → ℝ

But: Distribution μ of *a* often obtained by estimation or subjective knowledge

But: Distribution μ of a often obtained by estimation or subjective knowledge

But: Distribution μ of *a* often obtained by estimation or subjective knowledge

Question Can we control the effect of perturbations of μ on output distribution ν ?

- Simulate groundwater flow, here: at deep geological repository
- Computational model given by PDE

$$-\nabla \cdot (\mathsf{e}^a \nabla u) = f$$

source: Sandia National Labs

- Simulate groundwater flow, here: at deep geological repository
- Computational model given by PDE

$$-\nabla \cdot (\mathbf{e}^a \nabla u) = f$$

- Available data: ≈ 60 measurements of
 - (a) log conductivity *a*
 - (b) pressure head u

- Simulate groundwater flow, here: at deep geological repository
- Computational model given by PDE

$$-\nabla \cdot (\mathsf{e}^a \nabla u) = f$$

- Available data: ≈ 60 measurements of
 - (a) log conductivity a
 - (b) pressure head u
- Of interest: exit time q_{exit} of accidentally released radionuclides

- Simulate groundwater flow, here: at deep geological repository
- Computational model given by PDE

$$-\nabla \cdot (\mathbf{e}^a \nabla u) = f$$

- Available data: ≈ 60 measurements of
 - (a) log conductivity a
 - (b) pressure head u
- Of interest: exit time q_{exit} of accidentally released radionuclides

UQ approach:

- **1** Model uncertain spatially varying log conductivity a by Gaussian process
- 2 Use available data to estimate stochastic model for a
- **3** Compute resulting distribution of exit times q_{exit}

• We assume $a \sim N(m, c)$ with mean and covariance function m and c

E[a(x)] = m(x), Cov[a(x), a(y)] = c(x, y), $a(x) \sim N(m(x), c(x, x))$

- We assume $a \sim N(m, c)$ with mean and covariance function m and c
- Common parametrized class: Matérn covariance functions

$$c_{\sigma^2,\rho,k+\frac{1}{2}}(x,y) := \sigma^2 e^{-\frac{\sqrt{2k+1}}{\rho}|x-y|} P_k\left(\frac{\sqrt{2k+1}}{\rho}|x-y|\right)$$

with variance $\sigma^2 > 0$, correlation length $\rho > 0$, smoothness $k + \frac{1}{2}$, $k \in \mathbb{N}_0$

- We assume $a \sim N(m, c)$ with mean and covariance function m and c
- Common parametrized class: Matérn covariance functions

$$c_{\sigma^2,\rho,k+\frac{1}{2}}(x,y) := \sigma^2 e^{-\frac{\sqrt{2k+1}}{\rho}|x-y|} P_k\left(\frac{\sqrt{2k+1}}{\rho}|x-y|\right)$$

with variance $\sigma^2 > 0$, correlation length $\rho > 0$, smoothness $k + \frac{1}{2}$, $k \in \mathbb{N}_0$

- We assume $a \sim N(m, c)$ with mean and covariance function m and c
- Common parametrized class: Matérn covariance functions

$$c_{\sigma^{2},\rho,k+\frac{1}{2}}(x,y) := \sigma^{2} e^{-\frac{\sqrt{2k+1}}{\rho}|x-y|} P_{k}\left(\frac{\sqrt{2k+1}}{\rho}|x-y|\right)$$

with variance $\sigma^2 > 0$, correlation length $\rho > 0$, smoothness $k + \frac{1}{2}$, $k \in \mathbb{N}_0$

In practice, we obtain estimates σ², ν, ρ of the parameters given observational data a(x_j), j = 1,..., n (e.g., by maximum-likelihood)

Motivational Question

How does estimation error or different choice of parameters, e.g., for σ^2 , affect the output of the UQ analysis?

• Consider solution operator $S: \mathscr{A} \to \mathscr{U}$ of PDE mapping coefficient a to unique solution u of $\mathscr{F}(u, a) = 0$

- Consider solution operator $S: \mathscr{A} \to \mathscr{U}$ of PDE mapping coefficient a to unique solution u of $\mathscr{F}(u, a) = 0$
- \Rightarrow Distribution v of random solution u is pushforward measure

$$\nu = S_*\mu, \qquad \nu(A) = \mu(S^{-1}(A)), \quad A \subseteq \mathscr{U}$$

- Consider solution operator $S: \mathscr{A} \to \mathscr{U}$ of PDE mapping coefficient a to unique solution u of $\mathscr{F}(u, a) = 0$
- \Rightarrow Distribution v of random solution u is pushforward measure

$$\nu = S_*\mu, \qquad \nu(A) = \mu(S^{-1}(A)), \quad A \subseteq \mathscr{U}$$

• Often S (locally) Lipschitz: with monotonically increasing $\operatorname{Lip}_{S} : \mathbb{R}_{+} \to \mathbb{R}_{+}$ $\|S(a) - S(\widehat{a})\|_{\mathscr{U}} \leq \operatorname{Lip}_{S}(r) \|a - \widehat{a}\|_{\mathscr{A}} \quad \forall \|a\|_{\mathscr{A}}, \|\widehat{a}\|_{\mathscr{A}} \leq r$

- Consider solution operator $S: \mathscr{A} \to \mathscr{U}$ of PDE mapping coefficient a to unique solution u of $\mathscr{F}(u, a) = 0$
- \Rightarrow Distribution v of random solution u is pushforward measure

$$\nu = S_*\mu, \qquad \nu(A) = \mu(S^{-1}(A)), \quad A \subseteq \mathscr{U}$$

- Often S (locally) Lipschitz: with monotonically increasing $\operatorname{Lip}_{S} : \mathbb{R}_{+} \to \mathbb{R}_{+}$ $\|S(a) - S(\widehat{a})\|_{\mathscr{U}} \leq \operatorname{Lip}_{S}(r) \|a - \widehat{a}\|_{\mathscr{A}} \quad \forall \|a\|_{\mathscr{A}}, \|\widehat{a}\|_{\mathscr{A}} \leq r$
- **Running example:** For elliptic problem $-\nabla \cdot (e^a \nabla u) = f$ we have $\|u - \widehat{u}\|_{H_0^1(D)} = \|S(a) - S(\widehat{a})\|_{H_0^1(D)} \le c_f e^{3r} \|a - \widehat{a}\|_{L^{\infty}(D)}$

- Consider solution operator $S: \mathscr{A} \to \mathscr{U}$ of PDE mapping coefficient a to unique solution u of $\mathscr{F}(u, a) = 0$
- \Rightarrow Distribution v of random solution u is pushforward measure

$$\nu = S_*\mu, \qquad \nu(A) = \mu(S^{-1}(A)), \quad A \subseteq \mathscr{U}$$

- Often S (locally) Lipschitz: with monotonically increasing $\operatorname{Lip}_{S} : \mathbb{R}_{+} \to \mathbb{R}_{+}$ $\|S(a) - S(\widehat{a})\|_{\mathscr{U}} \leq \operatorname{Lip}_{S}(r) \|a - \widehat{a}\|_{\mathscr{A}} \quad \forall \|a\|_{\mathscr{A}}, \|\widehat{a}\|_{\mathscr{A}} \leq r$
- **Running example:** For elliptic problem $-\nabla \cdot (e^a \nabla u) = f$ we have $\|u - \widehat{u}\|_{H_0^1(D)} = \|S(a) - S(\widehat{a})\|_{H_0^1(D)} \le c_f e^{3r} \|a - \widehat{a}\|_{L^{\infty}(D)}$

• Does Lipschitz continuity of S yield Lipschitz continuity of $\mu \mapsto S_*\mu$?

• Consider total variation distance

$$d_{\mathsf{TV}}(\mu,\widehat{\mu}) = \sup_{A \subseteq \mathscr{A}} |\mu(A) - \widehat{\mu}(A)|$$

Consider total variation distance

$$d_{\mathsf{TV}}(\mu,\widehat{\mu}) = \sup_{A \subseteq \mathscr{A}} |\mu(A) - \widehat{\mu}(A)|$$

• Then, for any measurable $S: \mathscr{A} \to \mathscr{U}$ we have global Lipschitz continuity of $\mu \mapsto S_*\mu$:

 $d_{\mathsf{TV}}\left(S_*\mu, S_*\widehat{\mu}\right) \leq d_{\mathsf{TV}}\left(\mu, \widehat{\mu}\right),$

Consider total variation distance

$$d_{\mathsf{TV}}(\mu,\widehat{\mu}) = \sup_{A \subseteq \mathscr{A}} |\mu(A) - \widehat{\mu}(A)|$$

• Then, for any measurable $S: \mathscr{A} \to \mathscr{U}$ we have global Lipschitz continuity of $\mu \mapsto S_*\mu$:

$$d_{\mathsf{TV}}\left(S_*\mu, S_*\widehat{\mu}\right) \leq d_{\mathsf{TV}}\left(\mu, \widehat{\mu}\right),$$

• But: TV distance not suited for measures on infinite-dimensional spaces,

• Consider total variation distance

$$d_{\mathsf{TV}}(\mu,\widehat{\mu}) = \sup_{A \subseteq \mathscr{A}} |\mu(A) - \widehat{\mu}(A)|$$

• Then, for any measurable $S: \mathscr{A} \to \mathscr{U}$ we have global Lipschitz continuity of $\mu \mapsto S_*\mu$:

$$d_{\mathsf{TV}}(S_*\mu, S_*\widehat{\mu}) \leq d_{\mathsf{TV}}(\mu, \widehat{\mu}),$$

• **But:** TV distance not suited for measures on infinite-dimensional spaces, e.g., for Gaussian measures associated to Gaussian processes we have

$$d_{\mathsf{TV}}(\mathsf{N}(m,C),\mathsf{N}(m,\sigma^2 C)) = 1$$
 if $\sigma \neq 1$,

i.e., any estimation error in variance parameter σ^2 yields maximal distance

• Instead, we consider the *p*-Wasserstein distance

$$\mathsf{W}_p(\mu,\widehat{\mu}) := \inf_{X \sim \mu, \ \widehat{X} \sim \widehat{\mu}} \mathsf{E}\left[\|X - \widehat{X}\|^p \right]^{1/p}, \qquad p \ge 1.$$

• Instead, we consider the *p*-Wasserstein distance

$$\mathsf{W}_p(\mu,\widehat{\mu}) := \inf_{X \sim \mu, \ \widehat{X} \sim \widehat{\mu}} \mathsf{E}\left[\|X - \widehat{X}\|^p \right]^{1/p}, \qquad p \ge 1.$$

• Also reasonable for measures which are singular w. r. t. each other

$$\mathsf{W}_p(\delta_a, \delta_{\widehat{a}}) = \|a - \widehat{a}\|$$

• Instead, we consider the *p*-Wasserstein distance

$$\mathsf{W}_p(\mu,\widehat{\mu}) := \inf_{X \sim \mu, \ \widehat{X} \sim \widehat{\mu}} \mathsf{E}\left[\|X - \widehat{X}\|^p \right]^{1/p}, \qquad p \ge 1.$$

• Also reasonable for measures which are singular w. r. t. each other

$$\mathsf{W}_p(\delta_a, \delta_{\widehat{a}}) = \|a - \widehat{a}\|$$

• Allows dual representation, e.g., for W_1 we have by Kantorovich–Rubinstein

$$\mathsf{W}_{1}(\mu,\widehat{\mu}) = \sup_{f : \mathscr{A} \to \mathbb{R}, \text{ Lip}_{f} \leq 1} \left| \mathsf{E}_{\mu}\left[f\right] - \mathsf{E}_{\widehat{\mu}}\left[f\right] \right|$$

• Instead, we consider the *p*-Wasserstein distance

$$\mathsf{W}_p(\mu,\widehat{\mu}) := \inf_{X \sim \mu, \ \widehat{X} \sim \widehat{\mu}} \mathsf{E}\left[\|X - \widehat{X}\|^p \right]^{1/p}, \qquad p \ge 1.$$

• Also reasonable for measures which are singular w. r. t. each other

$$\mathsf{W}_p(\delta_a, \delta_{\widehat{a}}) = \|a - \widehat{a}\|$$

• Allows dual representation, e.g., for W_1 we have by Kantorovich–Rubinstein

$$\mathsf{W}_{1}(\mu,\widehat{\mu}) = \sup_{f : \mathscr{A} \to \mathbb{R}, \text{ Lip}_{f} \leq 1} \left| \mathsf{E}_{\mu}\left[f\right] - \mathsf{E}_{\widehat{\mu}}\left[f\right] \right|$$

• W₂-distance of Gaussian measures explicitly known [Gelbrich, 1990],

$$W_2\left(\mathsf{N}(m,C),\mathsf{N}(\widehat{m},\widehat{C})\right)^2 = \|m - \widehat{m}\|^2 + \operatorname{tr} C + \operatorname{tr} \widehat{C} - 2\operatorname{tr} \left(\sqrt{C}\widehat{C}\sqrt{C}\right)^{1/2},$$

and, e.g., $W_p\left(\mathsf{N}(m,\sigma^2 C),\mathsf{N}(m,\widehat{\sigma}^2 C)\right) \leq |\sigma - \widehat{\sigma}|$

• [Ernst, Pichler, S., 2020]: If $S: \mathscr{A} \to \mathscr{U}$ is globally Lipschitz with Lipschitz constant Lip_S, then for any probability measures $\mu, \hat{\mu}$ on \mathscr{A} we have

 $W_p(S_*\mu, S_*\widehat{\mu}) \leq \mathsf{Lip}_S W_p(\mu, \widehat{\mu}), \qquad p \geq 1.$

• [Ernst, Pichler, S., 2020]: If $S: \mathscr{A} \to \mathscr{U}$ is globally Lipschitz with Lipschitz constant Lip_S, then for any probability measures $\mu, \hat{\mu}$ on \mathscr{A} we have

 $W_p(S_*\mu, S_*\widehat{\mu}) \le \operatorname{Lip}_S W_p(\mu, \widehat{\mu}), \quad p \ge 1.$

• Applicable if S is bounded and linear, e. g.,

 $f \mapsto u = S(f)$ for PDE $-\nabla \cdot (e^a \nabla u) = f$

• [Ernst, Pichler, S., 2020]: If $S: \mathscr{A} \to \mathscr{U}$ is globally Lipschitz with Lipschitz constant Lip_S, then for any probability measures $\mu, \hat{\mu}$ on \mathscr{A} we have

 $W_p(S_*\mu, S_*\widehat{\mu}) \leq \operatorname{Lip}_S W_p(\mu, \widehat{\mu}), \quad p \geq 1.$

• Applicable if S is bounded and linear, e. g.,

$$f \mapsto u = S(f)$$
 for PDE $-\nabla \cdot (e^a \nabla u) = f$

• But: For general locally Lipschitz forward maps S we do not obtain global Lipschitz continuity of $\mu \mapsto S_*\mu$

• [Ernst, Pichler, S., 2020]: If $S: \mathscr{A} \to \mathscr{U}$ is globally Lipschitz with Lipschitz constant Lip_S, then for any probability measures $\mu, \hat{\mu}$ on \mathscr{A} we have

$$W_p(S_*\mu, S_*\widehat{\mu}) \le \operatorname{Lip}_S W_p(\mu, \widehat{\mu}), \qquad p \ge 1.$$

• Applicable if S is bounded and linear, e. g.,

$$f \mapsto u = S(f)$$
 for PDE $-\nabla \cdot (e^a \nabla u) = f$

 But: For general locally Lipschitz forward maps S we do not obtain global Lipschitz continuity of μ → S_{*}μ

Example: $\mu = N(0, 1), \ \mu_{\epsilon} = N(0, 1 + \epsilon) \text{ and } S(x) := e^x, x \in \mathbb{R}$, then

$$\frac{\mathsf{W}_p(S_*\mu, S_*\mu_{\epsilon})}{\mathsf{W}_p(\mu, \mu_{\epsilon})} \xrightarrow{\epsilon \to +\infty} +\infty$$
However, we can recover local Lipschitz continuity of $\mu \mapsto S_*\mu$ under suitable assumptions:

However, we can recover local Lipschitz continuity of $\mu\mapsto S_*\mu$ under suitable assumptions:

Theorem ([Ernst, Pichler, S., 2020])

Let $S: \mathscr{A} \to \mathscr{U}$ be locally Lipschitz,

 $\|S(a) - S(\widehat{a})\|_{\mathscr{U}} \le \mathsf{Lip}_{S}(r) \|a - \widehat{a}\|_{\mathscr{A}} \qquad \forall \|a\|_{\mathscr{A}}, \|\widehat{a}\|_{\mathscr{A}} \le r.$

However, we can recover local Lipschitz continuity of $\mu\mapsto S_*\mu$ under suitable assumptions:

Theorem ([Ernst, Pichler, S., 2020])

Let $S: \mathscr{A} \to \mathscr{U}$ be locally Lipschitz,

$$\|S(a) - S(\widehat{a})\|_{\mathscr{U}} \le \mathsf{Lip}_{S}(r) \|a - \widehat{a}\|_{\mathscr{A}} \qquad \forall \|a\|_{\mathscr{A}}, \|\widehat{a}\|_{\mathscr{A}} \le r.$$

Then for any $\mu, \widehat{\mu}$ with

$$\mathsf{E}_{\mu}\left[\mathsf{Lip}_{S}^{2p}(\|a\|_{\mathscr{A}})\right], \ \mathsf{E}_{\widehat{\mu}}\left[\mathsf{Lip}_{S}^{2p}(\|a\|_{\mathscr{A}})\right] \leq C < \infty$$

However, we can recover local Lipschitz continuity of $\mu\mapsto S_*\mu$ under suitable assumptions:

Theorem ([Ernst, Pichler, S., 2020])

Let $S: \mathscr{A} \to \mathscr{U}$ be locally Lipschitz,

$$\|S(a) - S(\widehat{a})\|_{\mathscr{U}} \le \mathsf{Lip}_{S}(r) \|a - \widehat{a}\|_{\mathscr{A}} \qquad \forall \|a\|_{\mathscr{A}}, \|\widehat{a}\|_{\mathscr{A}} \le r.$$

Then for any $\mu, \widehat{\mu}$ with

$$\mathsf{E}_{\mu}\left[\mathsf{Lip}_{S}^{2p}(\|a\|_{\mathscr{A}})\right], \ \mathsf{E}_{\widehat{\mu}}\left[\mathsf{Lip}_{S}^{2p}(\|a\|_{\mathscr{A}})\right] \leq C < \infty$$

we have

$$\mathsf{W}_p\left(S_*\mu, S_*\widehat{\mu}\right) \leq 2\mathbf{C}^{1/2p} \mathsf{W}_{2p}\left(\mu, \widehat{\mu}\right).$$

However, we can recover local Lipschitz continuity of $\mu\mapsto S_*\mu$ under suitable assumptions:

Theorem ([Ernst, Pichler, S., 2020])

Let $S: \mathscr{A} \to \mathscr{U}$ be locally Lipschitz,

$$\|S(a) - S(\widehat{a})\|_{\mathscr{U}} \le \mathsf{Lip}_{S}(r) \|a - \widehat{a}\|_{\mathscr{A}} \qquad \forall \|a\|_{\mathscr{A}}, \|\widehat{a}\|_{\mathscr{A}} \le r.$$

Then for any $\mu, \widehat{\mu}$ with

$$\mathsf{E}_{\mu}\left[\mathsf{Lip}_{S}^{2p}(\|a\|_{\mathscr{A}})\right], \ \mathsf{E}_{\widehat{\mu}}\left[\mathsf{Lip}_{S}^{2p}(\|a\|_{\mathscr{A}})\right] \leq C < \infty$$

we have

$$\mathsf{W}_p\left(S_*\mu, S_*\widehat{\mu}\right) \leq 2\mathbf{C}^{1/2p} \mathsf{W}_{2p}\left(\mu, \widehat{\mu}\right).$$

Which measures $\mu, \hat{\mu}$ satisfy the integrability assumption for $\text{Lip}_{S}(r) \in \mathcal{O}(e^{\beta r})$?

Special case: Gaussian random fields

• Recall Gaussian random fields $a \sim N(m, c)$ with continuous mean function $m \in C(D)$, $D \subset \mathbb{R}^d$ compact, and Matérn covariance functions

$$c_{\sigma^2,\rho,k+\frac{1}{2}}(x,y) := \sigma^2 e^{-\frac{\sqrt{2k+1}}{\rho}|x-y|} \frac{k!}{(2k)!} \sum_{i=0}^k \frac{(k+i)!}{i!(k-i)!} \left(2\frac{\sqrt{2k+1}}{\rho}|x-y|\right)^{k-i}$$

Special case: Gaussian random fields

• Recall Gaussian random fields $a \sim N(m, c)$ with continuous mean function $m \in C(D)$, $D \subset \mathbb{R}^d$ compact, and Matérn covariance functions

$$c_{\sigma^2,\rho,k+\frac{1}{2}}(x,y) := \sigma^2 e^{-\frac{\sqrt{2k+1}}{\rho}|x-y|} \frac{k!}{(2k)!} \sum_{i=0}^k \frac{(k+i)!}{i!(k-i)!} \left(2\frac{\sqrt{2k+1}}{\rho}|x-y|\right)^{k-i}$$

• We consider the following subclass \mathscr{G} of Gaussian measures on C(D)

$$\begin{split} \mathscr{G} &= \mathscr{G}(\mathscr{M}, \mathscr{C}) := \{ \mathsf{N}(m, c) : m \in \mathscr{M}, c \in \mathscr{C} \} \\ \mathscr{M} &= \{ m : \|m\|_{C(D)} \le r_{\mathscr{M}} \} \\ \\ \mathscr{C} &= \left\{ c_{\sigma^2, \rho, k + \frac{1}{2}} : \sigma \le \sigma_{\max}, \ \rho \ge \rho_{\min}, k \in \{0, \dots, k_{\max}\} \right\} \end{split}$$

$$\sup_{\mu \in \mathscr{G}} \mathsf{E}_{\mu} \left[\exp \left(\beta \, \|a\|_{C(D)} \right) \right] < \infty, \qquad \beta > 0.$$

$$\sup_{\mu \in \mathscr{G}} \mathsf{E}_{\mu} \left[\exp \left(\beta \| a \|_{C(D)} \right) \right] < \infty, \qquad \beta > 0.$$

Theorem ([Ernst, Pichler, S., 2020])

Consider $\mathscr{G} = \mathscr{G}(\mathscr{M}, \mathscr{C})$ and locally Lipschitz $S \colon C(D) \to \mathscr{U}$ with $\operatorname{Lip}_{S}(r) \in \mathscr{O}(e^{\beta r})$ for a $\beta > 0$.

$$\sup_{\mu \in \mathscr{G}} \mathsf{E}_{\mu} \left[\exp \left(\beta \| a \|_{C(D)} \right) \right] < \infty, \qquad \beta > 0.$$

Theorem ([Ernst, Pichler, S., 2020])

Consider $\mathscr{G} = \mathscr{G}(\mathscr{M}, \mathscr{C})$ and locally Lipschitz $S: C(D) \to \mathscr{U}$ with $\operatorname{Lip}_{S}(r) \in \mathscr{O}(e^{\beta r})$ for a $\beta > 0$. Then, there exists a constant $C = C(\mathscr{G}) < \infty$ such that

 $\mathsf{W}_p\left(S_*\mu, S_*\widehat{\mu}\right) \leq C \; \mathsf{W}_{2p}\left(\mu, \widehat{\mu}\right) \qquad \forall \mu, \widehat{\mu} \in \mathscr{G}.$

$$\sup_{\boldsymbol{\mu}\in\mathcal{G}} \mathsf{E}_{\boldsymbol{\mu}}\left[\exp\left(\beta \, \|a\|_{C(D)}\right)\right] < \infty, \qquad \beta > 0.$$

Theorem ([Ernst, Pichler, S., 2020])

Consider $\mathscr{G} = \mathscr{G}(\mathscr{M}, \mathscr{C})$ and locally Lipschitz $S: C(D) \to \mathscr{U}$ with $\operatorname{Lip}_{S}(r) \in \mathscr{O}(e^{\beta r})$ for a $\beta > 0$. Then, there exists a constant $C = C(\mathscr{G}) < \infty$ such that

$$\mathsf{W}_p\left(S_*\mu, S_*\widehat{\mu}\right) \leq C \; \mathsf{W}_{2p}\left(\mu, \widehat{\mu}\right) \qquad \forall \mu, \widehat{\mu} \in \mathscr{G}.$$

• **Example:** For elliptic problem $-\nabla \cdot (\mathbf{e}^a \nabla u) = f$ with lognormal diffusion coefficients we have for $\mu = N(m, c_{\sigma^2, \rho, k+\frac{1}{2}}), \quad \widehat{\mu} = N(m, c_{\widehat{\sigma}^2, \rho, k+\frac{1}{2}})$

$$\mathsf{W}_p\left(S_*\mu,S_*\widehat{\mu}\right) \leq C_{\sigma_{\max}} \, \left|\sigma - \widehat{\sigma}\right| \qquad \forall \sigma, \widehat{\sigma} \leq \sigma_{\max}$$

• Consider now scalar quantity of interest $q: \mathscr{U} \to \mathbb{R}$ of solution u of PDE

- Consider now scalar quantity of interest $q: \mathscr{U} \to \mathbb{R}$ of solution u of PDE
- Tool to evaluate uncertainty about quantity q(u): risk functionals

- Consider now scalar quantity of interest $q: \mathscr{U} \to \mathbb{R}$ of solution u of PDE
- Tool to evaluate uncertainty about quantity q(u): risk functionals
- Risk functionals R assign real numbers $R(X) \in \mathbb{R}$ to (real-valued) random variables X which quantify the risk associated with their random outcomes

- Consider now scalar quantity of interest $q: \mathscr{U} \to \mathbb{R}$ of solution u of PDE
- Tool to evaluate uncertainty about quantity q(u): risk functionals
- Risk functionals R assign real numbers $R(X) \in \mathbb{R}$ to (real-valued) random variables X which quantify the risk associated with their random outcomes

Examples:

• Expectation: R(X) = E[X]

- Consider now scalar quantity of interest $q: \mathscr{U} \to \mathbb{R}$ of solution u of PDE
- Tool to evaluate uncertainty about quantity q(u): risk functionals
- Risk functionals R assign real numbers $R(X) \in \mathbb{R}$ to (real-valued) random variables X which quantify the risk associated with their random outcomes

Examples:

- Expectation: R(X) = E[X]
- Value-at-Risk (VaR): $R(X) := F_X^{-1}(1-\alpha), \quad \alpha \in (0,1)$

- Consider now scalar quantity of interest $q: \mathscr{U} \to \mathbb{R}$ of solution u of PDE
- Tool to evaluate uncertainty about quantity q(u): risk functionals
- Risk functionals R assign real numbers $R(X) \in \mathbb{R}$ to (real-valued) random variables X which quantify the risk associated with their random outcomes

Examples:

- Expectation: R(X) = E[X]
- Value-at-Risk (VaR): $R(X) := F_X^{-1}(1-\alpha), \quad \alpha \in (0,1)$
- Average Value-at-Risk (AVaR): $R(X) = \frac{1}{\alpha} \int_{1-\alpha}^{1} F_X^{-1}(t) dt, \quad \alpha \in (0,1)$

- Consider now scalar quantity of interest $q: \mathscr{U} \to \mathbb{R}$ of solution u of PDE
- Tool to evaluate uncertainty about quantity q(u): risk functionals
- Risk functionals R assign real numbers $R(X) \in \mathbb{R}$ to (real-valued) random variables X which quantify the risk associated with their random outcomes

Examples:

- Expectation: R(X) = E[X]
- Value-at-Risk (VaR): $R(X) := F_X^{-1}(1-\alpha), \quad \alpha \in (0,1)$
- Average Value-at-Risk (AVaR): $R(X) = \frac{1}{\alpha} \int_{1-\alpha}^{1} F_X^{-1}(t) dt, \quad \alpha \in (0,1)$

• Spectral risk functional: $R(X) = \int_0^1 w(t) F_X^{-1}(t) dt, \quad w \in L^1(\mathbb{R}_+)$

Risk Functionals – Illustration

Risk Functionals – Illustration

Goal

Control effect of underlying distribution $u \sim v$ on risk value R(q(u))

- Common class of risk functionals which are
 - **1** monotone: $X \stackrel{\text{a.s.}}{\leq} Y \implies \mathsf{R}(X) \le \mathsf{R}(Y)$
 - **2** cash-invariant: R(X c) = R(X) c for any $c \in \mathbb{R}$
 - **3 subadditive:** $R(X + Y) \leq R(X) + R(Y)$
 - **4** positive homogeneous: $R(\lambda X) = \lambda R(X)$ for any $\lambda > 0$

- Common class of risk functionals which are
 - **1** monotone: $X \stackrel{\text{a.s.}}{\leq} Y \implies \mathsf{R}(X) \le \mathsf{R}(Y)$
 - **2** cash-invariant: R(X c) = R(X) c for any $c \in \mathbb{R}$
 - **3 subadditive:** $R(X + Y) \leq R(X) + R(Y)$
 - **4** positive homogeneous: $R(\lambda X) = \lambda R(X)$ for any $\lambda > 0$
- Spectral risk functionals such as AVaR are coherent, but VaR is not

- Common class of risk functionals which are
 - **1** monotone: $X \stackrel{\text{a.s.}}{\leq} Y \implies \mathsf{R}(X) \le \mathsf{R}(Y)$
 - **2** cash-invariant: R(X c) = R(X) c for any $c \in \mathbb{R}$
 - **3 subadditive:** $R(X+Y) \leq R(X) + R(Y)$
 - **4** positive homogeneous: $R(\lambda X) = \lambda R(X)$ for any $\lambda > 0$
- Spectral risk functionals such as AVaR are coherent, but VaR is not

Dual representation

By means of the Fenchel-Moreau theorem

 $\mathsf{R}(X) = \sup_{H \in \mathscr{H}} \mathsf{E} \left[H \; X \right], \qquad \mathscr{H} \subseteq \{H \colon H \ge 0 \text{ a. s. and } \mathsf{E} \left[H \right] = 1 \},$

i.e., H basically represent probability density functions.

- Common class of risk functionals which are
 - **1** monotone: $X \stackrel{\text{a.s.}}{\leq} Y \implies \mathsf{R}(X) \le \mathsf{R}(Y)$
 - **2** cash-invariant: R(X c) = R(X) c for any $c \in \mathbb{R}$
 - **3 subadditive:** $R(X+Y) \leq R(X) + R(Y)$
 - **4** positive homogeneous: $R(\lambda X) = \lambda R(X)$ for any $\lambda > 0$
- Spectral risk functionals such as AVaR are coherent, but VaR is not

Theorem ([Ernst, Pichler, S., 2020])

For Hölder-continuous quantity $q: \mathscr{U} \to \mathbb{R}$, i.e., $|q(u) - q(\widehat{u})| \leq C_q ||u - \widehat{u}||_{\mathscr{U}}^{\beta}$, $\beta > 0$,

- Common class of risk functionals which are
 - **1** monotone: $X \stackrel{\text{a.s.}}{\leq} Y \implies \mathsf{R}(X) \le \mathsf{R}(Y)$
 - **2** cash-invariant: R(X c) = R(X) c for any $c \in \mathbb{R}$
 - **3 subadditive:** $R(X+Y) \leq R(X) + R(Y)$
 - **4** positive homogeneous: $R(\lambda X) = \lambda R(X)$ for any $\lambda > 0$
- Spectral risk functionals such as AVaR are coherent, but VaR is not

Theorem ([Ernst, Pichler, S., 2020])

For Hölder-continuous quantity $q: \mathscr{U} \to \mathbb{R}$, i.e., $|q(u) - q(\widehat{u})| \le C_q ||u - \widehat{u}||_{\mathscr{U}}^{\beta}$, $\beta > 0$, we have for any coherent risk functional R that

$$|\mathsf{R}(q(u)) - \mathsf{R}(q(\widehat{u}))| \le C_{\mathsf{R},p,q} \ \mathsf{W}_p(\nu,\widehat{\nu})^{\beta}, \qquad p \ge 1$$

where $u \sim v$ and $\widehat{u} \sim \widehat{v}$.

Sensitivity of Risk Functionals for random PDE

Can combine now previous results and obtain

Can combine now previous results and obtain

Corollary ([Ernst, Pichler, S., 2020])

For Hölder-continuous $q: \mathscr{U} \to \mathbb{R}$ and locally Lipschitz $S: \mathscr{A} \to \mathscr{U}$ we have for any spectral risk measures \mathbb{R} and suitable measures $\mu, \hat{\mu}$ on \mathscr{A}

$$|\mathsf{R}(q(u)) - \mathsf{R}(q(\widehat{u}))| \le C_{q,w,p} \ \mathsf{W}_{2p} (\mu, \widehat{\mu})^{\beta}, \qquad p \ge 1,$$

where u = S(a), $a \sim \mu$, and $\widehat{u} = S(\widehat{a})$, $\widehat{a} \sim \widehat{\mu}$.

Can combine now previous results and obtain

Corollary ([Ernst, Pichler, S., 2020])

For Hölder-continuous $q: \mathscr{U} \to \mathbb{R}$ and locally Lipschitz $S: \mathscr{A} \to \mathscr{U}$ we have for any spectral risk measures \mathbb{R} and suitable measures $\mu, \hat{\mu}$ on \mathscr{A}

$$|\mathsf{R}(q(u)) - \mathsf{R}(q(\widehat{u}))| \le C_{q,w,p} \ \mathsf{W}_{2p} (\mu, \widehat{\mu})^{\beta}, \qquad p \ge 1,$$

where u = S(a), $a \sim \mu$, and $\widehat{u} = S(\widehat{a})$, $\widehat{a} \sim \widehat{\mu}$.

Example: For elliptic problem $-\nabla \cdot (e^a \nabla u) = f$ with lognormal diffusion coefficients we have for $a \sim N(m, c_{\sigma^2, \rho, k+\frac{1}{2}})$, $\widehat{a} \sim N(m, c_{\widehat{\sigma}^2, \rho, k+\frac{1}{2}})$

 $|\operatorname{AVaR}(q(u)) - \operatorname{AVaR}(q(\widehat{u}))| \le C_{\sigma_{\max}} \ |\sigma - \widehat{\sigma}|^{\beta} \qquad \forall \sigma, \widehat{\sigma} \le \sigma_{\max}$

for Hölder-continuous $q \colon H^1_0(D) \to \mathbb{R}$

• UQ approach to inverse problem

$$y = G(a) + \varepsilon, \qquad G \colon \mathscr{A} \to \mathbb{R}^k, \qquad \varepsilon \sim \mathsf{N}(0, \Sigma),$$

e.g., $G = O \circ S$ with observational map $O: \mathscr{U} \to \mathbb{R}^k$ applied to u = S(a)

• UQ approach to inverse problem

$$y = G(a) + \varepsilon, \qquad G \colon \mathscr{A} \to \mathbb{R}^k, \qquad \varepsilon \sim \mathsf{N}(0, \Sigma),$$

e.g., $G = O \circ S$ with observational map $O: \mathscr{U} \to \mathbb{R}^k$ applied to u = S(a)

• Update prior measure μ on \mathscr{A} for uncertain a by conditioning μ on data

• UQ approach to inverse problem

$$y = G(a) + \varepsilon, \qquad G \colon \mathscr{A} \to \mathbb{R}^k, \qquad \varepsilon \sim \mathsf{N}(0, \Sigma),$$

e.g., $G = O \circ S$ with observational map $O: \mathscr{U} \to \mathbb{R}^k$ applied to u = S(a)

• Update prior measure μ on \mathscr{A} for uncertain a by conditioning μ on data

• Bayes' rule: Posterior measure of $a \sim \mu$ given data $y = G(a) + \varepsilon$ is

$$\mu_{\Phi}(\mathsf{d} a) \propto e^{-\Phi(a)} \mu(\mathsf{d} a), \qquad \Phi(a) := \frac{1}{2} \|y - G(a)\|_{\Sigma^{-1}}^2.$$

• UQ approach to inverse problem

$$y = G(a) + \varepsilon, \qquad G \colon \mathscr{A} \to \mathbb{R}^k, \qquad \varepsilon \sim \mathsf{N}(0, \Sigma),$$

e.g., $G = O \circ S$ with observational map $O: \mathscr{U} \to \mathbb{R}^k$ applied to u = S(a)

• Update prior measure μ on \mathscr{A} for uncertain a by conditioning μ on data

• Bayes' rule: Posterior measure of $a \sim \mu$ given data $y = G(a) + \varepsilon$ is

$$\mu_{\Phi}(\mathsf{d}a) \propto \mathbf{e}^{-\Phi(a)} \,\mu(\mathsf{d}a), \qquad \Phi(a) := \frac{1}{2} \|y - G(a)\|_{\Sigma^{-1}}^2.$$

• BIP well-posed, i.e., local Lipschitz dependence of μ_{Φ} on data $y \in \mathbb{R}^k$ [Stuart, 2010], [Hosseini, 2017], [Sullivan, 2017], [Latz, 2020],...

• UQ approach to inverse problem

$$y = G(a) + \varepsilon, \qquad G \colon \mathscr{A} \to \mathbb{R}^k, \qquad \varepsilon \sim \mathsf{N}(0, \Sigma),$$

e.g., $G = O \circ S$ with observational map $O: \mathscr{U} \to \mathbb{R}^k$ applied to u = S(a)

• Update prior measure μ on \mathscr{A} for uncertain a by conditioning μ on data

• Bayes' rule: Posterior measure of $a \sim \mu$ given data $y = G(a) + \varepsilon$ is

$$\mu_{\Phi}(\mathsf{d}a) \propto \mathbf{e}^{-\Phi(a)} \,\mu(\mathsf{d}a), \qquad \Phi(a) := \frac{1}{2} \|y - G(a)\|_{\Sigma^{-1}}^2.$$

- BIP well-posed, i.e., local Lipschitz dependence of μ_{Φ} on data $y \in \mathbb{R}^k$ [Stuart, 2010], [Hosseini, 2017], [Sullivan, 2017], [Latz, 2020],...
- Question: How sensitively depends μ_{Φ} on (subjective) choice of μ ?

Sensitivity of Bayesian Inversion

Sensitivity of Bayesian Inversion

Theorem (informal, [S., 2020])

For d being TV, Hellinger, or 1-Wasserstein distance or KL divergence we have under suitable assumptions a locally Lipschitz continuity:

$$d(\mu_{\Phi}, \widehat{\mu}_{\Phi}) \leq C_{\Phi}(r) \ d(\mu, \widehat{\mu}), \quad \text{if } d(\mu, \widehat{\mu}) \leq r$$

Sensitivity of Bayesian Inversion

Theorem (informal, [S., 2020])

For d being TV, Hellinger, or 1-Wasserstein distance or KL divergence we have under suitable assumptions a locally Lipschitz continuity:

$$d(\mu_{\Phi}, \widehat{\mu}_{\Phi}) \leq C_{\Phi}(r) \ d(\mu, \widehat{\mu}), \quad \text{if } d(\mu, \widehat{\mu}) \leq r$$

But: $C_{\Phi}(r) \to \infty$ as data y more informative, e.g., noise $\varepsilon \to 0$
Wasserstein Distance

Theorem

● If $\Phi: \mathscr{A} \to \mathbb{R}_+$ is continuous, we have continuity in *p*-Wasserstein distance, i.e.,

$$\lim_{n \to \infty} \mathsf{W}_p\left(\mu, \widehat{\mu}^{(n)}\right) = 0 \quad \Rightarrow \quad \lim_{n \to \infty} \mathsf{W}_p\left(\mu_{\Phi}, \widehat{\mu}_{\Phi}^{(n)}\right) = 0, \qquad p \ge 1.$$

Wasserstein Distance

Theorem

1 If $\Phi: \mathscr{A} \to \mathbb{R}_+$ is continuous, we have continuity in *p*-Wasserstein distance, i.e.,

$$\lim_{n \to \infty} \mathsf{W}_p\left(\mu, \widehat{\mu}^{(n)}\right) = 0 \quad \Rightarrow \quad \lim_{n \to \infty} \mathsf{W}_p\left(\mu_{\Phi}, \widehat{\mu}_{\Phi}^{(n)}\right) = 0, \qquad p \ge 1.$$

2 If \mathscr{A} is bounded and $e^{-\Phi} \colon \mathscr{A} \to \mathbb{R}_+$ globally Lipschitz, then

$$W_1(\mu_{\Phi}, \widehat{\mu}_{\Phi}) \le \frac{C_{\Phi}}{Z^2} W_1(\mu, \widehat{\mu}) \qquad \forall \widehat{\mu} \colon W_1(\mu, \widehat{\mu}) \le \frac{Z}{2\mathsf{Lip}_{\Phi}}$$

where $Z := \int e^{-\Phi} d\mu$ denotes normalizing constant for μ_{Φ} .

Wasserstein Distance

Theorem

 If Φ: A → R₊ is continuous, we have continuity in p-Wasserstein distance, i.e.,

$$\lim_{n \to \infty} \mathsf{W}_p\left(\mu, \widehat{\mu}^{(n)}\right) = 0 \quad \Rightarrow \quad \lim_{n \to \infty} \mathsf{W}_p\left(\mu_{\Phi}, \widehat{\mu}_{\Phi}^{(n)}\right) = 0, \qquad p \ge 1.$$

2 If \mathscr{A} is bounded and $e^{-\Phi} \colon \mathscr{A} \to \mathbb{R}_+$ globally Lipschitz, then

$$W_1(\mu_{\Phi}, \widehat{\mu}_{\Phi}) \le \frac{C_{\Phi}}{Z^2} W_1(\mu, \widehat{\mu}) \qquad \forall \widehat{\mu} \colon W_1(\mu, \widehat{\mu}) \le \frac{Z}{2\mathsf{Lip}_{\Phi}}$$

where $Z := \int e^{-\Phi} d\mu$ denotes normalizing constant for μ_{Φ} .

Remark: [Diaconis & Freedman, 1986] studied Fréchet derivative $\partial T_{\Phi}(\mu)$ of mapping $T_{\Phi}(\mu) := \mu_{\Phi}$ w.r.t. TV distance topology and obtained

$$\|\partial T_{\Phi}(\mu)\| \simeq \frac{1}{Z}$$

Summary

- Locally Lipschitz sensitivity of uncertainty propagation w.r.t. Wasserstein distance for locally Lipschitz forward maps
- Also locally Hölder sensitivity of risk functionals for Hölder-continuous quantities of interest
- Similar results for sensitivity of Bayesian inversion w.r.t. choice of prior (or perturbations of log-Likelihood Φ)

More information:

- O. Ernst, A. Pichler, B. Sprungk. Sensitivity of Uncertainty Propagation for the Elliptic Diffusion Equation. *SIAM/ASA Journal on Uncertainty Quantification* (to appear), 2022.
- [2] B. Sprungk. On the local Lipschitz stability of Bayesian inverse problems. *Inverse Problems* **36**, 2020.