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Motivation: Automated heating of buildings

Figure 1: Control Problem: Heating of a building

heating/cooling power u(t) ∈ Rm.

room temperatures x(t) ∈ Rd.

target temperatures xT (t) ∈ Rd.

Running cost

`(t, x, u) = ‖x− xT (t)‖2
Q + λ‖u‖2

R.

Dynamics modelled by ODE
ẋ = f (t, x, u)

Problem (Infinite Horizon)

min
u

∫ ∞
0

`(t, x(t), u(t))dt,

ẋ(t) = f(t, x(t), u(t)), x(0) = x0.

↪→ Often infeasible.
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Model Predictive Control

Problem (Infinite Horizon)

min
u

∫ ∞
0

`(t, x(t), u(t))dt,
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Model Predictive Control

Problem (Finite Horizon)

Find ū(t) as a solution to

min
ū

∫ ti+T

ti

`(x̄(t), ū(t))dt + E(x̄(ti + T )),

˙̄x(t) = f (x̄(t), ū(t)), x̄(ti) = x(ti).
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Model Predictive Control

Problem (Finite Horizon)

Find ū(t) as a solution to

min
ū

∫ ti+T

ti

`(x̄(t), ū(t))dt + E(x̄(ti + T )),

˙̄x(t) = f (x̄(t), ū(t)), x̄(ti) = x(ti).

At each time step ti = iδ, i ∈ N0,

measure the state x(ti)
solve problem (FH) for ū

Apply the input

uMPC(t) = ū(t; ti, x(ti))
for t ∈ [ti, ti + δ) to the system.
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Downside of standard MPC:

State feedback only at discrete time points ti = iδ
↪→ δ needs to be small for robustness

Repeated online computation necessary
↪→ Each optimization needs to be performed in time δ.
↪→ Need to approximate, i.e. piecewise constant controls.

Possibility to alleviate this problem:

MPC with feedback laws.
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Feedback MPC

Problem (Feedback Finite Horizon)

Find α(t, x) as a solution to

min
α∈A

∫ T

0
`(x̄(t), α(t, x̄(t)))dt + E(x̄(T )),

˙̄x(t) = f (x̄(t), α(t, x̄(t))), x̄(0) = x0,

for all x0 ∈ Ω ⊂ Rd.
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Feedback MPC

Problem (Feedback Finite Horizon)

Find α(t, x) as a solution to

min
α∈A

∫ T

0
`(x̄(t), α(t, x̄(t)))dt + E(x̄(T )),

˙̄x(t) = f (x̄(t), α(t, x̄(t))), x̄(0) = x0,

for all x0 ∈ Ω ⊂ Rd.

Solve (FFH) for α(t, x) offline.
At each time interval ti = iδ, i ∈ N0,

apply input

uMPC(t) = α(t, x(t)) for t ∈ [ti, ti + δ)
to the system.
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The Hamilton Jacobi Bellman equation

Assumptions:

Dynamics linear in u: f (x, u) = f (x) + g(x)u
Cost quadratic in u: `(x, u) = c(x) + ‖u‖2

R

Problem (HJB Equation)

Find the value function V as the solution to
∂

∂t
V (t, x) +∇xV (t, x)ᵀ(f (x) + g(x)α(t, x)) + c(x) + ‖α(t, x)‖2

R = 0, (1)

V (T, ·) = E, (2)

where the optimal feedback control α satisfies

α(t, x) = −1
2
R−1g(x)ᵀ∇xV (t, x). (3)

Choose approximation class −→ Tensor Trains with polynomial basis

Choose approximation method −→ Dynamical low rank approximation
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The Tensor Train format

Consider one dimensional basis {φi : R→ R}ni=1 and a fully tensorized function

v(x) = AΦ(x) =
n∑

i1,...,id=1
A(i1, . . . , id)φi1(x1) · . . . · φid(xd)

↪→ storage of A ∈ Rn×n isO(nd), curse of dimensionality.
Instead, learn low rank Tensor Train (TT) approximation of A [Ose11, OSS19]:

A(i1, . . . , id) ≈
r1,...,rd−1∑
k1,...,kd−1

U1(i1, k1)U2(k1, i2, k2) · . . . · Ud(kd−1, id) (4)

↪→O(ndr2), curse lifted! (provided the ranks ri are bounded)
If equality holds in (4), r = (r1, . . . , rd−1) is called the TT-rank of A.
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Dynamical Low Rank Approximation ([KL10, CKL22])

Consider a tensor valued ODEs of the form

Ȧ(t) = F (t, A(t)), (5)
A(0) = A0, (6)

where A(t) ∈ Rn×...×n.

The set

Mr = {A ∈ Rn×...×n : A has TT-rank r}
defines a smooth manifold in the full tensor space Rn×...×n.

The tangent space at a point A ∈Mr is denoted TA(Mr).

A DLRA approximation Y (t) ∈Mr of A(t) is defined by

Ẏ (t) = arg min
ϑ∈TY (t)(Mr)

‖ϑ− F (t, Y (t))‖F , (7)

Y (0) = Y0, (8)

where Y0 ∈Mr is an approximation of the initial condition A0.
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DLRA applied to the HJB equation

Formally, we can write the HJB equation as

∂tV (t, x) = [LV ](t, x), (9)

where L is a nonlinear differential operator.

Given: basis Φ, TT-rank r

Goal: find approximate solution V̂ (t, x) = A(t)Φ(x), where A(t) ∈Mr.

Question: How to obtain A(t)?

Idea of DLRA: Project r.h.s. of (9) onto the current tangent space

Ȧ(t) = arg min
B∈TA(t)(Mr)

‖BΦ− [LV̂ ](t, ·)‖L2(Ω). (10)
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Ȧ(t) = arg min
B∈TA(t)(Mr)

‖BΦ− [LV̂ ](t, ·)‖L2(Ω). (10)

9/15 DLRA in Molecular Dynamics and Optimal Control



Results [ESS21]

Consider a semi-discretised 1D heat Eq. with unstable reaction term

ẋ = Ax + x3 + gu, (11)
x(0) = x0, (12)

with

x(t) ∈ Ω = (−2, 2)d, d = 12
Scalar control u ∈ R and g ∈ Rd

Basis {φi}ni of H2
mix(Ω)-orthonormal

polynomials up to degree n = 8
TT-rank r = (3, 5, 5, . . . , 5, 5, 3)

Dimension reduction from the full tensor space

nd = 912 > 282 billion to less than nd max
i=1,...,d

r2
i = 2700
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Results [ESS21]
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Figure 2: Control trajectories for a polynomial initial condition
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Figure 3: Control trajectories for a constant initial condition

Bellman DLRA Hybrid
comp. time mean cost comp. time mean cost comp. time mean cost

pol. deg. 4 3078.44 1.8822 333.29 2.6147 909.65 1.8804
pol. deg. 6 4270.33 1.8801 421.52 1.8802 1851.93 1.8798
pol. deg. 8 5967.91 1.8800 499.96 1.8799 – –

Table 1: Computation time of the methods in seconds as well as mean costs of polynomial initial conditions for the heat Eq.
with unstable reaction term.
The mean cost of the optimal control is 1.8793.
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Outlook: DLRA Molecular Dynamics

Task: Determine development of observable means

g(t, x) = E[f (Xt)|X0 = x]
of high dimensional molecular dynamics such as overdamped
Langevin dynamics

dXt = −1
γ
∇V (Xt)dt +

√
2β−1γ−1dWt, Xt ∈ Rd

The expectation g satisfies the Kolmogorov Backward Equation (KBE)

∂tg = Lg, (13)
g(0, x) = f (x) (14)

with

[Lg](t, x) = −1
γ
∇V (x) · ∇g(t, x) + 1

βγ
∆g(t, x).
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Outlook: DLRA in Molecular Dynamics

Problem: d = 3N � 1 (spatial coordinates of every atom)

Tools:

Physics informed coordinate transform (coarse graining) ξ : Rd → Rm, m ≤ d,
and projected dynamics driven by Lξ.
Tensor Train Ansatz with 1D basis functions φi on reduced variables:

g(t, x) ≈ A(t)(φ ◦ ξ)(x) =
∑
i1,...,id

Ai1,...,id(t)φi1(ξ1(x)) · . . . · φid(ξd(x)).,

DLRA with empirical norm via samples from the invariant measure µ.
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Figure 4: TT prediction (dashed) and empirical mean of a bond length between two atoms of a toy molecule developing over
time.
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Thank you very much for your attention!
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Dynamics of the system

General dynamics

ẋ = f (x, u)
can be transformed by defining x̂ = (x, u) and û = u̇ to:

˙̂x =
(
ẋ
u̇

)
=
(
f (x, u)

0

)
+
(

0
I

)
û = g(x̂) + Bû.

Linear in the control!

Nonlinear function g can be learned with

Neural networks, Gaussian processes, tensor networks

Koopman based methods like EDMD (e.g. [FPM+20, KKB21]

Sparse methods, i.e. SINDy ([BPK16])

or combinations of the above.
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Solving the FFH problem with Policy Iteration

Problem (FFH)
Find ū(t, x) as a solution to

min
ū∈A

∫ T

0
`(x̄, ū)dt+ E(x̄(T )),

˙̄x = g(x̄) +Bū, x̄(0) = x0

for all x0 ∈ X0.

Assumption:

F (x, u) = l(x) + 2
m∑

i=1
λi

∫ ui

0
P−1

i (µ)dµ,

Pi ∈ C1(R, (umin
i , umax

i )) odd, integrable, strictly increasing and bijective, λi > 0
l continuous, bounded below by a class K∞ function, l(0) = 0.

Iterate until convergence:

(1) Approximate Vū(t, x) =
∫ T
t `(x̄, ū)dt + E(x̄(T )) in suitable function class

(2) update ū(t, x)← −P
(

1
2

Λ−1g(x)T∇xVū(t, x)
)
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To approximate

V (t, x) =
∫ T

t
`(x̄, ū)dt + E(x̄(T ))

(a) Propagate samples {xk}Mk=1 through the dynamics and add up costs (MC) to get
snapshots

{yjk}j,k = {V (tj, xk)}j,k
at discrete time points tj.

(b) Fit V j(x) ≈ V (tj, x) by solving

min
V j∈M

M∑
k=1
|V j(xk)− yjk|

2 + µ‖V j‖2
H1

(c) interpolate (e.g.) linearly between V j(x) to obtain Ṽ (t, x) ≈ V (t, x).

Often suited for function classM in (b): polynomials (see, eg. [KK18])
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Error bounds in the abstract setting

In the abstract setting, error bounds can be derived, which we quote for the sake of
completeness.

Theorem ([LRSV13])
Suppose that Ȧ(t) ≤ µ and that a continuously differentiable best approximation
X(t) ∈Mr to A(t) exists for t ∈ [0, T ]. Let δ > 0 be such that the smallest
nonzero singular value of every matrix unfolding of X(t) is greater or equal to ρ,
and assume that the best-approximation error is bounded by ‖X(t)− A(t)‖ ≤ cρ
for t ∈ [0, T ] with a constant c depending only on the dimension d. Then, the
approximation error of the dynamical low-rank approximation defined by (7) with
initial value Y (0) = X(0) is bounded by

‖Y (t)−X(t)‖ ≤ 2βeβt
∫ t

0
‖X(s)− A(s)‖ds,

with β = Cµρ− 1 for t ∈ [0, T ], as long as the right-hand side remains bounded
by cρ. The constant C is only dependent on d and is given in [LRSV13].
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In practice we set

∆A = arg min
B∈TA(t)(Mr)

‖BΦ− [LV̂ ](t, ·)‖L2(Ω,M)

= min
B∈TA(t)(Mr)

M∑
k=1
|BΦ(xk)− [LV̂ ](t, xk)|2, xk uniform,

and make an Euler steps

Âi+1 = Ai + τ∆Ai (addition leaves the manifold),

Ai+1 = R(Âi+1) (retraction back to the manifold).

In the case of the TT-manifold, the retractionR can be done by simple rank
truncation [Ose11].
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Example: Heating of a building

Figure 5: Controlling the temperature of two rooms (simulation).
red, blue: room temperatures
black: target temperature
green - - -: outer temperature
green · · ·: control values

7/7 DLRA in Molecular Dynamics and Optimal Control


	Appendix

