Sparse neural networks for forward and inverse estimation

Bojana Rosic, Bram van de Weg,

 and Wouter van Dijk(b.rosic@utwente.nl)

Applied Mechanics and Data Analysis
Faculty of Engineering Technology
University of Twente, Netherlands

UNIVERSITY
OF TWENTE

Motivation

Goal: build self-learning neural network based meta-models

Motivation

Goal: build self-learning sparse neural network based meta-models

NN for forward and inverse problems

Inverse problem

Given noisy observations

$$
y_{n+1}=H z_{n+1}+\varepsilon_{n+1}
$$

find the uknown z and q modelled by

$$
z_{n+1}=G\left(z_{n}, q\right)+\eta_{n}, \quad n \in \mathbb{N}
$$

in predefined time interval $[0, T]$.

NN for forward and inverse problems

Inverse problem

Given noisy observations

$$
y_{n+1}=H z_{n+1}+\varepsilon_{n+1}
$$

find the uknown z and q modelled by

$$
z_{n+1}=G\left(z_{n}, q\right)+\eta_{n}, \quad n \in \mathbb{N}
$$

in predefined time interval $[0, T]$.

- the operator $G \in \mathcal{C}\left(\mathbb{R}^{d} \times \mathbb{R}^{p} \mapsto \mathbb{R}^{d}\right)$
- the operator $H \in \mathcal{L}\left(\mathbb{R}^{d} \mapsto \mathbb{R}^{m}\right)$
- $\left(\varepsilon_{n}\right),\left(\eta_{n}\right)$ are i.i.d sequences

NN for forward and inverse problems

Inverse problem

Given noisy observations

$$
y_{n+1}=H z_{n+1}+\varepsilon_{n+1}
$$

find the uknown z and q modelled by

$$
z_{n+1}=G\left(z_{n}, q\right)+\eta_{n}, \quad n \in \mathbb{N}
$$

in predefined time interval $[0, T]$.

- the operator $G \in \mathcal{C}\left(\mathbb{R}^{d} \times \mathbb{R}^{p} \mapsto \mathbb{R}^{d}\right)$
- the operator $H \in \mathcal{L}\left(\mathbb{R}^{d} \mapsto \mathbb{R}^{m}\right)$
- $\left(\varepsilon_{n}\right),\left(\eta_{n}\right)$ are i.i.d sequences

We may distinguish: state and parameter estimation problems.

NN for forward and inverse problems

In a Bayesian setting one may model q as uncertain following $q_{f}(\omega) \sim p(q)$ and estimate

$$
p\left(q \mid y_{0}, \ldots, y_{N}\right) \propto p\left(y_{0}, \ldots, y_{N} \mid q\right) p(q)
$$

NN for forward and inverse problems

In a Bayesian setting one may model q as uncertain following $q_{f}(\omega) \sim p(q)$ and estimate

$$
p\left(q \mid y_{0}, \ldots, y_{N}\right) \propto p\left(y_{0}, \ldots, y_{N} \mid q\right) p(q)
$$

For an efficient estimation of the posterior we need two steps:

- Forecast (prediction, uncertainty propagation) step

$$
\operatorname{Map} \phi: q_{f}(\omega) \mapsto y_{n, f}(\omega)
$$

- Assimilation (update) phase

$$
\operatorname{Map} \varphi: y_{n, f}(\omega) \mapsto q_{f}(\omega)
$$

NN for forward and inverse problems

In a Bayesian setting one may model q as uncertain following $q_{f}(\omega) \sim p(q)$ and estimate

$$
p\left(q \mid y_{0}, \ldots, y_{N}\right) \propto p\left(y_{0}, \ldots, y_{N} \mid q\right) p(q)
$$

For an efficient estimation of the posterior we need two steps:

- Forecast (prediction, uncertainty propagation) step

$$
\operatorname{Map} \phi: q_{f}(\omega) \mapsto y_{n, f}(\omega)
$$

- Assimilation (update) phase

$$
\operatorname{Map} \varphi: y_{n, f}(\omega) \mapsto q_{f}(\omega)
$$

Both of these maps can be approximated by neural networks.

Time-dependent neural networks

In this talk we will look at:

- standard recurrent neural network
- standard long-short term memory network ${ }^{a}$

(a) RNN

(b) LSTM

[^0]
Time-dependent neural network

Let be given the nonlinear dynamical system described by

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{f}\left(\boldsymbol{x}(t), \boldsymbol{x}_{t}, \boldsymbol{u}(t), t\right)
$$

in which $\boldsymbol{x} \in \mathbb{R}^{d}$ is the state of the system, $\boldsymbol{u} \in \mathbb{R}^{d}$ is the input

Time-dependent neural network

Let be given the nonlinear dynamical system described by

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{f}\left(\boldsymbol{x}(t), \boldsymbol{x}_{t}, \boldsymbol{u}(t), t\right)
$$

in which $\boldsymbol{x} \in \mathbb{R}^{d}$ is the state of the system, $\boldsymbol{u} \in \mathbb{R}^{d}$ is the input, and

$$
\boldsymbol{x}_{t}=\{\boldsymbol{x}(\tau): \tau \leq t\}
$$

represents the trajectory of the solution in the past.

Time-dependent neural network

Let be given the nonlinear dynamical system described by

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{f}\left(\boldsymbol{x}(t), \boldsymbol{x}_{t}, \boldsymbol{u}(t), t\right)
$$

in which $\boldsymbol{x} \in \mathbb{R}^{d}$ is the state of the system, $\boldsymbol{u} \in \mathbb{R}^{d}$ is the input, and

$$
\boldsymbol{x}_{t}=\{\boldsymbol{x}(\tau): \tau \leq t\}
$$

represents the trajectory of the solution in the past.
For the discrete delay one has:

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{f}\left(\boldsymbol{x}(t), \boldsymbol{x}\left(t-\tau_{1}\right), \ldots, \boldsymbol{x}\left(t-\tau_{m}\right), \boldsymbol{u}(t), t\right)
$$

in which $\tau_{1}>\cdots>\tau_{m} \geq 0$ denotes the memory of the system.

Time dependent neural network

In a special linear case [Sherstinsky, 2020] the previous system can be decoupled to

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{A x}(t)+\boldsymbol{B} \boldsymbol{h}\left(t-\tau_{0}\right)+\boldsymbol{C u}(t)+\boldsymbol{a}, \quad \boldsymbol{h}=\boldsymbol{g}\left(\boldsymbol{x}\left(t-\tau_{0}\right)\right)
$$

in which \boldsymbol{g} is a nonlinear, saturating, and invertible function of a state.

Time dependent neural network

In a special linear case [Sherstinsky, 2020] the previous system can be decoupled to

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{h}\left(t-\tau_{0}\right)+\boldsymbol{C u}(t)+\boldsymbol{a}, \quad \boldsymbol{h}=\boldsymbol{g}\left(\boldsymbol{x}\left(t-\tau_{0}\right)\right)
$$

in which \boldsymbol{g} is a nonlinear, saturating, and invertible function of a state.
Taking $\tau_{0}=\Delta t$, and after the discretization by the implicit Euler technique, one may rewrite the previous system by

$$
\begin{gathered}
\boldsymbol{x}_{n}=\boldsymbol{W}_{x} \boldsymbol{x}_{n-1}+\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b} \\
\boldsymbol{h}_{n}=\boldsymbol{g}\left(\boldsymbol{x}_{n}\right)
\end{gathered}
$$

Time dependent neural network

In a special linear case [Sherstinsky, 2020] the previous system can be decoupled to

$$
\dot{\boldsymbol{x}}(t)=\boldsymbol{A} \boldsymbol{x}(t)+\boldsymbol{B} \boldsymbol{h}\left(t-\tau_{0}\right)+\boldsymbol{C u}(t)+\boldsymbol{a}, \quad \boldsymbol{h}=\boldsymbol{g}\left(\boldsymbol{x}\left(t-\tau_{0}\right)\right)
$$

in which \boldsymbol{g} is a nonlinear, saturating, and invertible function of a state.
Taking $\tau_{0}=\Delta t$, and after the discretization by the implicit Euler technique, one may rewrite the previous system by

$$
\begin{gathered}
\boldsymbol{x}_{n}=\boldsymbol{W}_{x} \boldsymbol{x}_{n-1}+\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b} \\
\boldsymbol{h}_{n}=\boldsymbol{g}\left(\boldsymbol{x}_{n}\right)
\end{gathered}
$$

in which

$$
\begin{gathered}
\boldsymbol{W}_{x}=(I-\Delta t \boldsymbol{A})^{-1}, \quad \boldsymbol{W}_{h}=\Delta t \boldsymbol{W}_{x} \boldsymbol{B} \\
\boldsymbol{W}_{u}=\Delta t \boldsymbol{W}_{x} \boldsymbol{C}, \quad \boldsymbol{b}=\Delta t \boldsymbol{W}_{s} \boldsymbol{a} .
\end{gathered}
$$

Stability

In order that

$$
\begin{gathered}
\boldsymbol{x}_{n}=\boldsymbol{W}_{x} \boldsymbol{x}_{n-1}+\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{a} \\
\boldsymbol{h}_{n}=\boldsymbol{g}\left(\boldsymbol{x}_{n}\right)
\end{gathered}
$$

is stable every eignevalue of $\boldsymbol{W}_{s}:=\boldsymbol{W}_{x}+\boldsymbol{W}_{h}$ must lie within the complexvalued unit circle:

Stability

In order that

$$
\begin{gathered}
\boldsymbol{x}_{n}=\boldsymbol{W}_{x} \boldsymbol{x}_{n-1}+\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{a} \\
\boldsymbol{h}_{n}=\boldsymbol{g}\left(\boldsymbol{x}_{n}\right)
\end{gathered}
$$

is stable every eignevalue of $\boldsymbol{W}_{s}:=\boldsymbol{W}_{x}+\boldsymbol{W}_{h}$ must lie within the complexvalued unit circle:

- for $a_{i i} \ll 0, a_{i \neq j}=0$ then $\boldsymbol{W}_{x}=(I-\Delta t \boldsymbol{A})^{-1} \approx-\boldsymbol{A}^{-1} \approx \mathbf{0}$

Stability

In order that

$$
\begin{gathered}
\boldsymbol{x}_{n}=\boldsymbol{W}_{x} \boldsymbol{x}_{n-1}+\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{a} \\
\boldsymbol{h}_{n}=\boldsymbol{g}\left(\boldsymbol{x}_{n}\right)
\end{gathered}
$$

is stable every eignevalue of $\boldsymbol{W}_{s}:=\boldsymbol{W}_{x}+\boldsymbol{W}_{h}$ must lie within the complexvalued unit circle:

- for $a_{i i} \ll 0, a_{i \neq j}=0$ then $\boldsymbol{W}_{x}=(I-\Delta t \boldsymbol{A})^{-1} \approx-\boldsymbol{A}^{-1} \approx \mathbf{0}$
- for $\boldsymbol{B}=\boldsymbol{B}^{T}, \boldsymbol{B}=\boldsymbol{V}_{B} \boldsymbol{\Lambda}_{B} \boldsymbol{V}_{B}^{T}$ then the stability comes from

$$
\boldsymbol{W}_{s}:=-\boldsymbol{A}^{-1} \boldsymbol{B}=-\left(\boldsymbol{V}_{B}^{T} \boldsymbol{A}^{-1}\right)\left(\boldsymbol{V}_{B} \boldsymbol{\Lambda}_{B}\right)
$$

Stability

In order that

$$
\begin{gathered}
\boldsymbol{x}_{n}=\boldsymbol{W}_{x} \boldsymbol{x}_{n-1}+\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{a} \\
\boldsymbol{h}_{n}=\boldsymbol{g}\left(\boldsymbol{x}_{n}\right)
\end{gathered}
$$

is stable every eignevalue of $\boldsymbol{W}_{s}:=\boldsymbol{W}_{x}+\boldsymbol{W}_{h}$ must lie within the complexvalued unit circle:

- for $a_{i i} \ll 0, a_{i \neq j}=0$ then $\boldsymbol{W}_{x}=(I-\Delta t \boldsymbol{A})^{-1} \approx-\boldsymbol{A}^{-1} \approx \mathbf{0}$
- for $\boldsymbol{B}=\boldsymbol{B}^{T}, \boldsymbol{B}=\boldsymbol{V}_{B} \boldsymbol{\Lambda}_{B} \boldsymbol{V}_{B}^{T}$ then the stability comes from

$$
\boldsymbol{W}_{s}:=-\boldsymbol{A}^{-1} \boldsymbol{B}=-\left(\boldsymbol{V}_{B}^{T} \boldsymbol{A}^{-1}\right)\left(\boldsymbol{V}_{B} \boldsymbol{\Lambda}_{B}\right)
$$

Thus, sufficient condition for stability is

$$
0<\lambda_{i}\left(\left|a_{i i}\right|\right)^{-1}<1, \quad \text { i.e. } 0<\lambda_{i}<\left|a_{i i}\right|
$$

Reccurent neural cell

As \boldsymbol{W}_{x} vanishes, the previously described dynamical system becomes

$$
\begin{gathered}
\boldsymbol{x}_{n}=\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b} \\
\boldsymbol{h}_{n}=\boldsymbol{g}\left(\boldsymbol{x}_{n}\right) .
\end{gathered}
$$

Reccurent neural cell

As \boldsymbol{W}_{x} vanishes, the previously described dynamical system becomes

$$
\begin{gathered}
\boldsymbol{x}_{n}=\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b} \\
\boldsymbol{h}_{n}=\boldsymbol{g}\left(\boldsymbol{x}_{n}\right) .
\end{gathered}
$$

This matches the definition of the standard recurrent neural cell (i.e. the evolution of a hidden state)

$$
\boldsymbol{h}_{n}=\boldsymbol{g}\left(\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b}\right)
$$

with the output (observable) defined as

$$
\boldsymbol{y}_{n}=Y\left(\boldsymbol{h}_{n}, \boldsymbol{w}_{y}\right)
$$

in which Y is possibly a nonlinear observation operator.

Reccurent neural network

Collecting

$$
\boldsymbol{w}:=\left\{\boldsymbol{W}_{h}, \boldsymbol{W}_{u}, \boldsymbol{b}, \boldsymbol{w}_{y}\right\}
$$

and applying recurrency in the time interval $[0, \Delta t, \ldots, n \Delta t]$, one can further introduce a neural network (NN) as a composition of n functions

$$
\boldsymbol{g}_{n}(\boldsymbol{h}, \boldsymbol{u}, \boldsymbol{w}):=\boldsymbol{g}\left(\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b}\right)
$$

Reccurent neural network

Collecting

$$
\boldsymbol{w}:=\left\{\boldsymbol{W}_{h}, \boldsymbol{W}_{u}, \boldsymbol{b}, \boldsymbol{w}_{y}\right\}
$$

and applying recurrency in the time interval $[0, \Delta t, \ldots, n \Delta t]$, one can further introduce a neural network (NN) as a composition of n functions

$$
\boldsymbol{g}_{n}(\boldsymbol{h}, \boldsymbol{u}, \boldsymbol{w}):=\boldsymbol{g}\left(\boldsymbol{W}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b}\right)
$$

such that NN reads

$$
\boldsymbol{F}(\boldsymbol{h}, \boldsymbol{u}, \boldsymbol{w}):=\left(\boldsymbol{Y}_{n} \circ \boldsymbol{g}_{n-1} \circ \boldsymbol{g}_{n-2} \circ \ldots \circ \boldsymbol{g}_{1}\right)(\boldsymbol{h}, \boldsymbol{u}, \boldsymbol{w})
$$

Here,

$$
Y_{n}(\boldsymbol{h}, \boldsymbol{u}, \boldsymbol{w}):=Y\left(\boldsymbol{h}_{n}, \boldsymbol{w}_{y}\right)
$$

Reccurent neural network

As all cells share weights, we have significant reduction of the parametrisation compared to the feedforward network.

Offline gradient descent

The goal is to estimate \boldsymbol{w} given data $\left(\boldsymbol{y}_{i}\right)_{i=1, n}$ such that

$$
\boldsymbol{w}^{*}=\arg \min \boldsymbol{J}(\boldsymbol{w}), \quad \boldsymbol{J}(\boldsymbol{w}):=\sum_{i=1}^{n} \frac{1}{2}\langle\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}(\boldsymbol{w}), \boldsymbol{y}_{i}-\underbrace{\hat{\boldsymbol{y}}_{i}(\boldsymbol{w})}_{N N}\rangle
$$

is minimized. The gradient based approach

Offline gradient descent

The goal is to estimate \boldsymbol{w} given data $\left(\boldsymbol{y}_{i}\right)_{i=1, n}$ such that

$$
\boldsymbol{w}^{*}=\arg \min \boldsymbol{J}(\boldsymbol{w}), \quad \boldsymbol{J}(\boldsymbol{w}):=\sum_{i=1}^{n} \frac{1}{2}\langle\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}(\boldsymbol{w}), \boldsymbol{y}_{i}-\underbrace{\hat{\boldsymbol{y}}_{i}(\boldsymbol{w})}_{N N}\rangle
$$

is minimized. The gradient based approach

$$
\boldsymbol{w}=\boldsymbol{w}-\alpha \frac{\partial \boldsymbol{J}}{\partial \boldsymbol{w}}
$$

then requires estimation of the gradient \boldsymbol{J} that depends on

$$
\left\|\boldsymbol{W}_{h}\right\|^{\ell-n}\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|^{\ell-n}
$$

and thus on the properties of both $\left\|\boldsymbol{W}_{h}\right\|$ and $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|$.

Offline gradient descent

Looking at

$$
\left\|\mid \boldsymbol{W}_{h}\right\|^{\ell-n}\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|^{\ell-n}
$$

one may have the following scenarios

Offline gradient descent

Looking at

$$
\left\|\mid \boldsymbol{W}_{h}\right\|^{\ell-n}\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|^{\ell-n}
$$

one may have the following scenarios

- If all $0<\lambda_{i}\left(\boldsymbol{W}_{h}\right)<1$ then $\left\|\boldsymbol{W}_{h}\right\|<1$, and if $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|<1$ then the gradient vanishes.

Offline gradient descent

Looking at

$$
\left\|\mid \boldsymbol{W}_{h}\right\|^{\ell-n}\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|^{\ell-n}
$$

one may have the following scenarios

- If all $0<\lambda_{i}\left(\boldsymbol{W}_{h}\right)<1$ then $\left\|\boldsymbol{W}_{h}\right\|<1$, and if $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|<1$ then the gradient vanishes.
- If any $\lambda_{i}\left(\boldsymbol{W}_{h}\right)>1$ then the term $\left\|\boldsymbol{W}_{h}\right\|$ will exponentially grow, and thus two scenarios:

Offline gradient descent

Looking at

$$
\left\|\mid \boldsymbol{W}_{h}\right\|^{\ell-n}\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|^{\ell-n}
$$

one may have the following scenarios

- If all $0<\lambda_{i}\left(\boldsymbol{W}_{h}\right)<1$ then $\left\|\boldsymbol{W}_{h}\right\|<1$, and if $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|<1$ then the gradient vanishes.
- If any $\lambda_{i}\left(\boldsymbol{W}_{h}\right)>1$ then the term $\left\|\boldsymbol{W}_{h}\right\|$ will exponentially grow, and thus two scenarios:
- If $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|=\mathbf{0}$ (the flat regions of the activation function), then the gradient vanishes

Offline gradient descent

Looking at

$$
\left\|\mid \boldsymbol{W}_{h}\right\|^{\ell-n}\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|^{\ell-n}
$$

one may have the following scenarios

- If all $0<\lambda_{i}\left(\boldsymbol{W}_{h}\right)<1$ then $\left\|\boldsymbol{W}_{h}\right\|<1$, and if $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|<1$ then the gradient vanishes.
- If any $\lambda_{i}\left(\boldsymbol{W}_{h}\right)>1$ then the term $\left\|\boldsymbol{W}_{h}\right\|$ will exponentially grow, and thus two scenarios:
- If $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|=\mathbf{0}$ (the flat regions of the activation function), then the gradient vanishes
- If $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\| \neq \mathbf{0}$ (quasi-linear regions of the activation function), then the gradient explodes.

Offline gradient descent

Looking at

$$
\left\|\mid \boldsymbol{W}_{h}\right\|^{\ell-n}\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|^{\ell-n}
$$

one may have the following scenarios

- If all $0<\lambda_{i}\left(\boldsymbol{W}_{h}\right)<1$ then $\left\|\boldsymbol{W}_{h}\right\|<1$, and if $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|<1$ then the gradient vanishes.
- If any $\lambda_{i}\left(\boldsymbol{W}_{h}\right)>1$ then the term $\left\|\boldsymbol{W}_{h}\right\|$ will exponentially grow, and thus two scenarios:
- If $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\|=\mathbf{0}$ (the flat regions of the activation function), then the gradient vanishes
- If $\left\|\boldsymbol{g}^{\prime}(\boldsymbol{z})\right\| \neq \mathbf{0}$ (quasi-linear regions of the activation function), then the gradient explodes.

Thus, the RNNs suffer from the so-called gradient problem when used in long term integration.

Long-short term memory cell

To make the system robust one may generalize previous equation to

$$
\boldsymbol{x}_{n}=\boldsymbol{g}_{c x}(n) \odot\left(\boldsymbol{W}_{x} \boldsymbol{x}_{n-1}\right)+\boldsymbol{g}_{c}(n) \odot \boldsymbol{g}\left(\boldsymbol{s}_{n}\right)
$$

in which

$$
\boldsymbol{s}_{n}:=\boldsymbol{W}_{h} \boldsymbol{v}_{n-1}+\boldsymbol{g}_{c u}(n) \odot \boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b}
$$

and

$$
\boldsymbol{v}_{n-1}:=\boldsymbol{g}_{c h}(n) \odot \boldsymbol{h}_{n-1} .
$$

Long-short term memory cell

To make the system robust one may generalize previous equation to

$$
\boldsymbol{x}_{n}=\boldsymbol{g}_{c x}(n) \odot\left(\boldsymbol{W}_{x} \boldsymbol{x}_{n-1}\right)+\boldsymbol{g}_{c}(n) \odot \boldsymbol{g}\left(\boldsymbol{s}_{n}\right)
$$

in which

$$
\boldsymbol{s}_{n}:=\boldsymbol{W}_{h} \boldsymbol{v}_{n-1}+\boldsymbol{g}_{c u}(n) \odot \boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b}
$$

and

$$
\boldsymbol{v}_{n-1}:=\boldsymbol{g}_{c h}(n) \odot \boldsymbol{h}_{n-1} .
$$

Here, controls are continuous, differentiable, monotonically increasing functions that map the domain $(-\infty, \infty)$ into the range $(0,1)$ (e.g. logistic function), i.e. $\mathbf{0} \leq \boldsymbol{g}_{c x}(n), \boldsymbol{g}_{c u}(n), \boldsymbol{g}_{c}(n) \leq \mathbf{1}$.

Long-short term memory cell

To make the system robust one may generalize previous equation to

$$
\boldsymbol{x}_{n}=\boldsymbol{g}_{c x}(n) \odot\left(\boldsymbol{W}_{x} \boldsymbol{x}_{n-1}\right)+\boldsymbol{g}_{c}(n) \odot \boldsymbol{g}\left(\boldsymbol{s}_{n}\right)
$$

in which

$$
\boldsymbol{s}_{n}:=\boldsymbol{W}_{h} \boldsymbol{v}_{n-1}+\boldsymbol{g}_{c u}(n) \odot \boldsymbol{W}_{u} \boldsymbol{u}_{n}+\boldsymbol{b}
$$

and

$$
\boldsymbol{v}_{n-1}:=\boldsymbol{g}_{c h}(n) \odot \boldsymbol{h}_{n-1} .
$$

Here, controls are continuous, differentiable, monotonically increasing functions that map the domain $(-\infty, \infty)$ into the range $(0,1)$ (e.g. logistic function), i.e. $\mathbf{0} \leq \boldsymbol{g}_{c x}(n), \boldsymbol{g}_{c u}(n), \boldsymbol{g}_{c}(n) \leq \mathbf{1}$. Taking $\boldsymbol{W}_{x}=\boldsymbol{I}$ one obtains

$$
\boldsymbol{x}_{n}=\boldsymbol{g}_{c x}(n) \odot \boldsymbol{x}_{n-1}+\boldsymbol{g}_{c u}(n) \odot \boldsymbol{g}\left(\boldsymbol{s}_{n}\right)
$$

which is a core constituent of the set of formulas defining the cell of the Vanilla LSTM network [Hochreiter and Schmidhuber, 1997].

Long-short term memory cell

Thus,

$$
\begin{gathered}
\boldsymbol{x}_{n}=\boldsymbol{g}_{c x}(n) \odot \boldsymbol{x}_{n-1}+\boldsymbol{g}_{c u}(n) \odot \boldsymbol{g}\left(\boldsymbol{s}_{n}\right) \\
\boldsymbol{h}_{n}=g\left(\boldsymbol{x}_{n}\right)
\end{gathered}
$$

in which we choose

$$
\begin{aligned}
\boldsymbol{g}_{c x}(n) & =\boldsymbol{g}_{a}\left(\hat{\boldsymbol{W}}_{x} \boldsymbol{x}_{n}+\hat{\boldsymbol{W}}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{b}_{c x}\right) \\
\boldsymbol{g}_{c u}(n) & =\boldsymbol{g}_{a}\left(\tilde{\boldsymbol{W}}_{x} \boldsymbol{x}_{n}+\tilde{\boldsymbol{W}}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{b}_{c u}\right) \\
\boldsymbol{g}_{c}(n) & =\boldsymbol{g}_{a}\left(\overline{\boldsymbol{W}}_{x} \boldsymbol{x}_{n}+\overline{\boldsymbol{W}}_{h} \boldsymbol{h}_{n-1}+\boldsymbol{b}_{c}\right)
\end{aligned}
$$

This matches the definition of the standard LSTM cell with the output (observable) defined as

$$
\boldsymbol{y}_{n}=Y\left(\boldsymbol{h}_{n}, \boldsymbol{w}_{y}\right)
$$

in which Y is a possibly nonlinear observation operator.

Offline gradient descent

Collecting all unknown parameters to

$$
\boldsymbol{w}:=\left\{\hat{\boldsymbol{W}}_{x}, \hat{\boldsymbol{W}}_{h}, \tilde{\boldsymbol{W}}_{x}, \tilde{\boldsymbol{W}}, \ldots\right\}
$$

the goal is to estimate \boldsymbol{w} given data $\left(\boldsymbol{u}_{n}, \boldsymbol{y}_{n}\right)$ such that

$$
\boldsymbol{w}^{*}=\arg \min \boldsymbol{J}(\boldsymbol{w}), \quad \boldsymbol{J}(\boldsymbol{w}):=\sum_{i=1}^{n} \frac{1}{2}\left\langle\boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}(\boldsymbol{w}), \boldsymbol{y}_{i}-\hat{\boldsymbol{y}}_{i}(\boldsymbol{w})\right\rangle
$$

is minimized by using the gradient based approach

$$
\boldsymbol{w}=\boldsymbol{w}-\alpha \frac{\partial \boldsymbol{J}}{\partial \boldsymbol{w}}
$$

But, we dont have sparsity...

and cannot include noise in data, or in the input...

Stochastic RNN formulation

Let the unknown weights \boldsymbol{w} be modelled as uncertain, i.e.

$$
\boldsymbol{w}\left(\omega_{w}\right) \in L_{2}\left(\Omega_{w}, \mathfrak{F}_{w}, \mathbb{P}_{w}\right)
$$

Stochastic RNN formulation

Let the unknown weights \boldsymbol{w} be modelled as uncertain, i.e.

$$
\boldsymbol{w}\left(\omega_{w}\right) \in L_{2}\left(\Omega_{w}, \mathfrak{F}_{w}, \mathbb{P}_{w}\right)
$$

such that the RNN cell based dynamical system becomes stochastic

$$
\begin{gathered}
\hat{\boldsymbol{x}}_{n}\left(\omega_{w}\right)=\boldsymbol{W}_{h}\left(\omega_{w}\right) \hat{\boldsymbol{h}}_{n-1}\left(\omega_{w}\right)+\boldsymbol{W}_{u}\left(\omega_{w}\right) \boldsymbol{u}_{n}\left(\omega_{w}\right)+\boldsymbol{b}\left(\omega_{w}\right) \\
\hat{\boldsymbol{h}}_{n}\left(\omega_{w}\right)=\boldsymbol{g}\left(\hat{\boldsymbol{x}}_{n}\left(\omega_{w}\right)\right)
\end{gathered}
$$

Stochastic RNN formulation

Let the unknown weights \boldsymbol{w} be modelled as uncertain, i.e.

$$
\boldsymbol{w}\left(\omega_{w}\right) \in L_{2}\left(\Omega_{w}, \mathfrak{F}_{w}, \mathbb{P}_{w}\right)
$$

such that the RNN cell based dynamical system becomes stochastic

$$
\begin{gathered}
\hat{\boldsymbol{x}}_{n}\left(\omega_{w}\right)=\boldsymbol{W}_{h}\left(\omega_{w}\right) \hat{\boldsymbol{h}}_{n-1}\left(\omega_{w}\right)+\boldsymbol{W}_{u}\left(\omega_{w}\right) \boldsymbol{u}_{n}\left(\omega_{w}\right)+\boldsymbol{b}\left(\omega_{w}\right) \\
\hat{\boldsymbol{h}}_{n}\left(\omega_{w}\right)=\boldsymbol{g}\left(\hat{\boldsymbol{x}}_{n}\left(\omega_{w}\right)\right)
\end{gathered}
$$

with the output (observable) defined as

$$
\hat{\boldsymbol{y}}_{n}\left(\omega_{w}\right)=Y\left(\hat{\boldsymbol{h}}_{n}\left(\omega_{w}\right), \boldsymbol{w}_{y}\left(\omega_{w}\right)\right)+\varepsilon_{n}\left(\omega_{\varepsilon}\right)
$$

in which $\varepsilon_{n}\left(\omega_{\varepsilon}\right)$ is the prediction of the cell-modelling and/or observation error, here assumed to be independent of $\boldsymbol{w}\left(\omega_{w}\right)$.

Stochastic RNN cell: forward pass

Given $\boldsymbol{w}\left(\omega_{w}\right), \boldsymbol{\varepsilon}\left(\omega_{\varepsilon}\right)$ and

$$
\Omega:=\Omega_{w} \times \Omega_{\varepsilon}, \mathfrak{F}:=\sigma\left(\mathfrak{F}_{w} \times \mathfrak{F}_{\varepsilon}\right), \mathbb{P}=\mathbb{P}_{w} \mathbb{P}_{\varepsilon}
$$

we may estimate the predicted values

$$
\begin{gathered}
\hat{\boldsymbol{x}}_{n}(\omega)=\boldsymbol{W}_{h}(\omega) \hat{\boldsymbol{h}}_{n-1}(\omega)+\boldsymbol{W}_{u}(\omega) \boldsymbol{u}_{n}(\omega)+\boldsymbol{b}(\omega) \\
\hat{\boldsymbol{h}}_{n}(\omega)=\boldsymbol{g}\left(\hat{\boldsymbol{x}}_{n}(\omega)\right) \\
\hat{\boldsymbol{y}}_{n}(\omega)=Y\left(\hat{\boldsymbol{h}}_{n}(\omega), \boldsymbol{w}_{y}(\omega)\right)+\varepsilon_{n}(\omega)
\end{gathered}
$$

with one of the following methods

- sampling (e.g. Monte Carlo, quasi-Monte Carlo, etc.)
- approximation based methods (e.g. kernel methods, Gaussian mixture, etc.)

Bayesian RNN

Given observation

$$
\boldsymbol{y}_{n}=Y\left(\boldsymbol{h}_{n}(\boldsymbol{w}), \boldsymbol{w}\right)+\varepsilon(\hat{\omega}),
$$

one may estimate the unknown weights \boldsymbol{w} by using Bayes rule

$$
p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right) \propto p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}\right) p(\boldsymbol{w})
$$

in which $p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}\right)$ denotes the likelihood, and $p(\boldsymbol{w})$ is the a priori distribution.

Bayesian RNN

Given observation

$$
\boldsymbol{y}_{n}=Y\left(\boldsymbol{h}_{n}(\boldsymbol{w}), \boldsymbol{w}\right)+\varepsilon(\hat{\omega}),
$$

one may estimate the unknown weights \boldsymbol{w} by using Bayes rule

$$
p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right) \propto p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}\right) p(\boldsymbol{w})
$$

in which $p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}\right)$ denotes the likelihood, and $p(\boldsymbol{w})$ is the a priori distribution.

Assuming that all activation functions and observation are linear, and

$$
p(\boldsymbol{w}) \sim \mathcal{N}\left(\boldsymbol{w}_{f}, \boldsymbol{C}_{w}\right), \quad \boldsymbol{w}_{f} \sim \mathcal{N}\left(\boldsymbol{w}_{f}(\omega), \boldsymbol{C}_{w}\right), \quad p\left(\varepsilon_{n}\right) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{\varepsilon}\right)
$$

the Bayes's rule reduces to the regularized RNN-cost function

$$
\boldsymbol{J}_{B R}:=\left(\boldsymbol{J}(\boldsymbol{w})+\frac{1}{2}\left\langle\boldsymbol{w}-\boldsymbol{w}_{f}, \boldsymbol{w}-\boldsymbol{w}_{f}\right\rangle_{\boldsymbol{C}_{w}}+\frac{1}{2}\left\langle\boldsymbol{w}_{f}-\overline{\boldsymbol{w}}, \boldsymbol{w}_{f}-\overline{\boldsymbol{w}}\right\rangle_{\boldsymbol{C}_{w}}\right)
$$

Bayesian RNN

From

$$
\boldsymbol{w}^{*}=\arg \min \boldsymbol{J}_{B R}(\boldsymbol{w})
$$

the maximum aposterori estimate reads

$$
\boldsymbol{w}_{a}(\omega)=\boldsymbol{w}_{f}(\omega)+\boldsymbol{K}\left(\boldsymbol{y}_{n}-\hat{\boldsymbol{y}}_{n}(\omega)\right)
$$

in which "a" denotes a-posteriori random variable, and

$$
\boldsymbol{K}=\boldsymbol{C}_{\boldsymbol{w}(\omega), \boldsymbol{y}_{n}(\omega)} \boldsymbol{C}_{\boldsymbol{y}_{n}(\omega)}^{-1}
$$

is known as the Kalman gain. The previous formula is also known as a classical Kalman filter estimate.

Nonlinearity issue

However, RNN cell is violating linearity assumption:

$$
\begin{gathered}
\boldsymbol{x}_{n}(\omega)=\boldsymbol{W}_{h}(\omega) \boldsymbol{h}_{n-1}(\omega)+\boldsymbol{W}_{u}(\omega) \boldsymbol{u}_{n}(\omega)+\boldsymbol{b}(\omega) \\
\boldsymbol{h}_{n}(\omega)=\boldsymbol{g}\left(\boldsymbol{x}_{n}(\omega)\right) \\
\boldsymbol{y}_{n}(\omega)=Y\left(\boldsymbol{h}_{n}(\omega), \boldsymbol{w}_{y}(\omega)\right)+\boldsymbol{\varepsilon}_{n}(\omega)
\end{gathered}
$$

and thus one cannot use the previously described Kalman filter.

Nonlinearity issue

However, RNN cell is violating linearity assumption:

$$
\begin{gathered}
\boldsymbol{x}_{n}(\omega)=\boldsymbol{W}_{h}(\omega) \boldsymbol{h}_{n-1}(\omega)+\boldsymbol{W}_{u}(\omega) \boldsymbol{u}_{n}(\omega)+\boldsymbol{b}(\omega) \\
\boldsymbol{h}_{n}(\omega)=\boldsymbol{g}\left(\boldsymbol{x}_{n}(\omega)\right) \\
\boldsymbol{y}_{n}(\omega)=Y\left(\boldsymbol{h}_{n}(\omega), \boldsymbol{w}_{y}(\omega)\right)+\boldsymbol{\varepsilon}_{n}(\omega)
\end{gathered}
$$

and thus one cannot use the previously described Kalman filter.
On the other hand, estimating the full posterior using Bayes's rule:

$$
p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right) \propto p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}\right) p(\boldsymbol{w})
$$

would be computationally expensive.

Gauss-Markov-Kalman RNN

Inverse problem

Instead of estimating $p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right)$, estimate the conditional expectation

$$
\mathbb{E}\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right)=\int \boldsymbol{w} p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right) d \boldsymbol{w} \text { directly without integration. }
$$

Gauss-Markov-Kalman RNN

Inverse problem

Instead of estimating $p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right)$, estimate the conditional expectation

$$
\mathbb{E}\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right)=\int \boldsymbol{w} p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right) d \boldsymbol{w} \text { directly without integration. }
$$

$$
\mathbb{E}(\boldsymbol{w} \mid \mathfrak{B})=P_{\mathfrak{B}}(\boldsymbol{w})=\underset{\eta \in \mathscr{Q}_{\mathfrak{B}}}{\arg \min }\|\boldsymbol{w}-\boldsymbol{\eta}\|_{\mathscr{Q}}^{2}, \quad \mathfrak{B}:=\sigma\left(\boldsymbol{y}_{n}\right)
$$

Optimality and orthogonality conditions:

$$
\begin{aligned}
& \forall \tilde{\boldsymbol{w}} \in \mathscr{Q}_{\mathfrak{B}}:\langle\langle\boldsymbol{w}-\mathbb{E}(\boldsymbol{w} \mid \sigma(\boldsymbol{y})), \tilde{\boldsymbol{w}}\rangle\rangle= \\
& \quad 0 \Rightarrow \boldsymbol{w}-\mathbb{E}(\boldsymbol{w} \mid \sigma(\boldsymbol{y})) \in \mathscr{Q}_{\mathfrak{B}}^{+}
\end{aligned}
$$

Gauss-Markov-Kalman RNN

Inverse problem

Instead of estimating $p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right)$, estimate the conditional expectation

$$
\mathbb{E}\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right)=\int \boldsymbol{w} p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right) d \boldsymbol{w} \text { directly without integration. }
$$

$$
\mathbb{E}(\boldsymbol{w} \mid \mathfrak{B})=P_{\mathfrak{B}}(\boldsymbol{w})=\underset{\eta \in \mathscr{Q}_{\mathfrak{B}}}{\arg \min }\|\boldsymbol{w}-\boldsymbol{\eta}\|_{\mathscr{Q}}^{2}, \quad \mathfrak{B}:=\sigma\left(\boldsymbol{y}_{n}\right)
$$

Optimality and orthogonality conditions:

$$
\begin{aligned}
& \forall \tilde{\boldsymbol{w}} \in \mathscr{Q}_{\mathfrak{B}}:\langle\langle\boldsymbol{w}-\mathbb{E}(\boldsymbol{w} \mid \sigma(\boldsymbol{y})), \tilde{\boldsymbol{w}}\rangle\rangle= \\
& \quad 0 \Rightarrow \boldsymbol{w}-\mathbb{E}(\boldsymbol{w} \mid \sigma(\boldsymbol{y})) \in \mathscr{Q}_{\mathfrak{B}}^{\frac{1}{B}}
\end{aligned}
$$

$\boldsymbol{w}=P_{\mathfrak{B}} \boldsymbol{w}+\left(I-P_{\mathfrak{B}}\right) \boldsymbol{w}$

Gauss-Markov-Kalman RNN

Use Doob-Dynkin lemma

$$
\mathbb{E}(\boldsymbol{w} \mid \mathfrak{B})=P_{\mathfrak{B}}(\boldsymbol{w})=\boldsymbol{\varphi}\left(\boldsymbol{y}_{n}(\boldsymbol{w})\right)
$$

with $\varphi \in L_{0}(\mathcal{Y} ; \mathcal{Q})$ such that

$$
\begin{aligned}
\boldsymbol{w} & =P_{\mathfrak{B}} \boldsymbol{w}+\left(I-P_{\mathfrak{B}}\right) \boldsymbol{w} \\
& =\boldsymbol{\varphi}\left(\boldsymbol{y}_{n}\right)+\left(\boldsymbol{w}-\boldsymbol{\varphi}\left(\boldsymbol{y}_{n}\right)\right) .
\end{aligned}
$$

Then one has

$$
\boldsymbol{w}=\underbrace{\boldsymbol{\varphi}(\boldsymbol{y})}_{\text {data }}+\underbrace{(\boldsymbol{w}-\boldsymbol{\varphi}(\boldsymbol{y}))}_{\text {prior }}
$$

leading to [Rosic et al, 2012]

$$
\boldsymbol{w}_{a}(\omega)=\boldsymbol{w}_{f}(\omega)+\boldsymbol{\varphi}\left(\boldsymbol{y}_{n}\right)-\boldsymbol{\varphi}\left(\boldsymbol{y}_{n}(\omega)\right)
$$

Updating more than mean

Inverse problem

Given noisy data estimate the conditional expectation $\mathbb{E}\left(R(\boldsymbol{w}) \mid \boldsymbol{y}_{n}\right)$ of \mathcal{R}-valued functions of \boldsymbol{w}, priorly seen as vectorial $R V s R(\boldsymbol{w})$ - in the Hilbert space $\mathscr{R}:=L_{2}(\Omega, \mathfrak{F}, \mathbb{P} ; \mathcal{R})$, directly without integration.

- Conditional mean:

$$
R(\boldsymbol{w})=\boldsymbol{w}
$$

- Conditional covariance:

$$
R(\boldsymbol{w})=(\boldsymbol{w}-\overline{\boldsymbol{w}}) \otimes(\boldsymbol{w}-\overline{\boldsymbol{w}}), \quad \overline{\boldsymbol{w}}=\mathbb{E}(\boldsymbol{w})
$$

Updating more than mean

Hence,

$$
\mathbb{E}(R(\boldsymbol{w}) \mid \mathfrak{B})=P_{\mathfrak{B}}(R(\boldsymbol{w}))=\underset{n \in \mathscr{R}_{\boldsymbol{N}}}{\arg \min }\|R(\boldsymbol{w})-\eta\|_{\mathscr{R}}^{2}
$$

in which closed subspace

$$
\mathscr{R}_{\mathfrak{B}}=L_{2}\left(\Omega, \sigma\left(\boldsymbol{y}_{n}\right), \mathbb{P} ; \mathcal{R}\right), \quad \mathfrak{B}:=\sigma\left(\boldsymbol{y}_{n}\right)
$$

Optimality condition:
$\forall \eta \in \mathscr{R}_{\mathfrak{B}}:\langle\langle R(\boldsymbol{w})-\mathbb{E}(R(\boldsymbol{w}) \mid \mathfrak{B}), \eta\rangle\rangle=0 \Rightarrow R(\boldsymbol{w})-\mathbb{E}(R(\boldsymbol{w}) \mid \mathfrak{B}) \in \mathscr{R}_{\mathfrak{B}}^{\perp}$

Updating more than mean

Hence,

$$
\mathbb{E}(R(\boldsymbol{w}) \mid \mathfrak{B})=P_{\mathfrak{B}}(R(\boldsymbol{w}))=\underset{\eta \in \mathscr{R}_{\mathfrak{B}}}{\arg \min }\|R(\boldsymbol{w})-\eta\|_{\mathscr{R}}^{2}
$$

in which closed subspace

$$
\mathscr{R}_{\mathfrak{B}}=L_{2}\left(\Omega, \sigma\left(\boldsymbol{y}_{n}\right), \mathbb{P} ; \mathcal{R}\right), \quad \mathfrak{B}:=\sigma\left(\boldsymbol{y}_{n}\right)
$$

Optimality condition:

$$
\forall \eta \in \mathscr{R}_{\mathfrak{B}}:\langle\langle R(\boldsymbol{w})-\mathbb{E}(R(\boldsymbol{w}) \mid \mathfrak{B}), \eta\rangle\rangle=0 \Rightarrow R(\boldsymbol{w})-\mathbb{E}(R(\boldsymbol{w}) \mid \mathfrak{B}) \in \mathscr{R}_{\mathfrak{B}}^{\perp}
$$

Using Doob-Dynkin lemma

$$
\mathbb{E}(R(\boldsymbol{w}) \mid \mathfrak{B})=P_{\mathfrak{B}}(R(\boldsymbol{w}))=\Phi_{R(\boldsymbol{w})}\left(\boldsymbol{y}_{n}\right)
$$

leads to [Matthies et al., 2016]

$$
R\left(\boldsymbol{w}_{a}\right)=R\left(\boldsymbol{w}_{f}\right)+\Phi_{R(\boldsymbol{w})}\left(\boldsymbol{y}_{n}\right)-\Phi_{R(\boldsymbol{w})}\left(\boldsymbol{y}_{n}\left(\boldsymbol{w}_{f}\right)\right)
$$

Optimal map for covariance

- Exact posterior mean

$$
R(\boldsymbol{w}):=\boldsymbol{w}, \quad \mathbb{E}\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}\right)=\Phi_{\boldsymbol{w}}\left(\boldsymbol{y}_{n}\right)
$$

- Exact posterior correlation

$$
R(\boldsymbol{w})=\boldsymbol{w} \otimes \boldsymbol{w}, \quad C_{c}:=\mathbb{E}\left(\boldsymbol{w} \otimes \boldsymbol{w} \mid \boldsymbol{y}_{n}\right)=\Phi_{\boldsymbol{w} \otimes \boldsymbol{w}}\left(\boldsymbol{y}_{n}\right)
$$

- Exact posterior covariance

$$
C_{p}=C_{c}-\Phi_{\boldsymbol{w}}\left(\boldsymbol{y}_{n}\right) \otimes \Phi_{\boldsymbol{w}}\left(\boldsymbol{y}_{n}\right)
$$

Optimal map for covariance

In Gauss-Markov-Kalman filter

$$
\boldsymbol{w}_{a}=\boldsymbol{w}_{f}+\varphi\left(\boldsymbol{y}_{n}\right)-\varphi\left(\boldsymbol{y}_{n, f}\right), \quad \tilde{\boldsymbol{w}}_{a}=\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)
$$

Optimal map for covariance

In Gauss-Markov-Kalman filter

$$
\boldsymbol{w}_{a}=\boldsymbol{w}_{f}+\varphi\left(\boldsymbol{y}_{n}\right)-\varphi\left(\boldsymbol{y}_{n, f}\right), \quad \tilde{\boldsymbol{w}}_{a}=\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)
$$

one has

$$
C_{\boldsymbol{w}_{a}}=\mathbb{E}\left(\tilde{\boldsymbol{w}}_{a} \otimes \tilde{\boldsymbol{w}}_{a} \mid \boldsymbol{y}_{n}\right)=\mathbb{E}\left(\left(\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)\right) \otimes\left(\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)\right) \mid \boldsymbol{y}_{n}\right)
$$

Optimal map for covariance

In Gauss-Markov-Kalman filter

$$
\boldsymbol{w}_{a}=\boldsymbol{w}_{f}+\varphi\left(\boldsymbol{y}_{n}\right)-\varphi\left(\boldsymbol{y}_{n, f}\right), \quad \tilde{\boldsymbol{w}}_{a}=\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)
$$

one has

$$
C_{\boldsymbol{w}_{a}}=\mathbb{E}\left(\tilde{\boldsymbol{w}}_{a} \otimes \tilde{\boldsymbol{w}}_{a} \mid \boldsymbol{y}_{n}\right)=\mathbb{E}\left(\left(\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)\right) \otimes\left(\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)\right) \mid \boldsymbol{y}_{n}\right)
$$

which is not same as

$$
C_{p}=C_{c}-\varphi\left(\boldsymbol{y}_{n}\right) \otimes \varphi\left(\boldsymbol{y}_{n}\right), \quad C_{c}:=\mathbb{E}\left(\boldsymbol{w} \otimes \boldsymbol{w} \mid \boldsymbol{y}_{n}\right)=\Phi_{\boldsymbol{w} \otimes \boldsymbol{w}}\left(\boldsymbol{y}_{n}\right)
$$

Optimal map for covariance

In Gauss-Markov-Kalman filter

$$
\boldsymbol{w}_{a}=\boldsymbol{w}_{f}+\varphi\left(\boldsymbol{y}_{n}\right)-\varphi\left(\boldsymbol{y}_{n, f}\right), \quad \tilde{\boldsymbol{w}}_{a}=\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)
$$

one has

$$
C_{\boldsymbol{w}_{a}}=\mathbb{E}\left(\tilde{\boldsymbol{w}}_{a} \otimes \tilde{\boldsymbol{w}}_{a} \mid \boldsymbol{y}_{n}\right)=\mathbb{E}\left(\left(\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)\right) \otimes\left(\boldsymbol{w}_{f}-\varphi\left(\boldsymbol{y}_{n, f}\right)\right) \mid \boldsymbol{y}_{n}\right)
$$

which is not same as

$$
C_{p}=C_{c}-\varphi\left(\boldsymbol{y}_{n}\right) \otimes \varphi\left(\boldsymbol{y}_{n}\right), \quad C_{c}:=\mathbb{E}\left(\boldsymbol{w} \otimes \boldsymbol{w} \mid \boldsymbol{y}_{n}\right)=\Phi_{\boldsymbol{w} \otimes \boldsymbol{w}}\left(\boldsymbol{y}_{n}\right)
$$

Therefore, the first equation has to be corrected to

$$
\boldsymbol{w}_{a}=\varphi\left(\boldsymbol{y}_{n}\right)+C_{p}^{1 / 2} C_{\boldsymbol{w}_{a}}^{-1 / 2} \tilde{\boldsymbol{w}}_{a}
$$

Still, no sparsity only noise

Sparsity inducing prior

In order to introduce sparsity in weights (and thus connections), we may introduce the Laplace prior [Tipping, 2001]:

$$
\boldsymbol{w} \sim e^{-\|\boldsymbol{w}\|_{1}} \Rightarrow p(\boldsymbol{w} \mid \varpi) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\varpi}^{-1}\right)
$$

in which ϖ is the diagonal matrix with entries $\varpi_{i i}$ (defining precision) corresponding to the Gamma prior $p\left(\varpi_{i i}\right)$. By marginalizing one obtains

$$
p(\boldsymbol{w})=\int p(\boldsymbol{w} \mid \boldsymbol{\varpi}) p(\varpi) d \varpi
$$

(a) Multivariate Gaussian.

(b) Multivariate Student-t.

(c) Multivariate Laplace.

Relevance vector machine

Furthermore, in $\boldsymbol{y}_{n}(\omega)=Y\left(\boldsymbol{h}_{n}(\boldsymbol{w}(\omega)), \boldsymbol{w}(\omega)\right)+\boldsymbol{\varepsilon}(\omega)$ one assumes that

$$
p(\boldsymbol{\varepsilon}) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\beta}^{-1}\right)
$$

with $\boldsymbol{\beta}$ also having Gamma prior, i.e. we assume $\boldsymbol{\beta}$ to be unknown.

Relevance vector machine

Furthermore, in $\boldsymbol{y}_{n}(\omega)=Y\left(\boldsymbol{h}_{n}(\boldsymbol{w}(\omega)), \boldsymbol{w}(\omega)\right)+\boldsymbol{\varepsilon}(\omega)$ one assumes that

$$
p(\varepsilon) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\beta}^{-1}\right)
$$

with $\boldsymbol{\beta}$ also having Gamma prior, i.e. we assume $\boldsymbol{\beta}$ to be unknown. Thus, Bayes rule reads

$$
p\left(\boldsymbol{w}, \varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right) \propto p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \varpi, \boldsymbol{\beta}\right) p(\boldsymbol{w}, \varpi, \boldsymbol{\beta})
$$

Relevance vector machine

Furthermore, in $\boldsymbol{y}_{n}(\omega)=Y\left(\boldsymbol{h}_{n}(\boldsymbol{w}(\omega)), \boldsymbol{w}(\omega)\right)+\boldsymbol{\varepsilon}(\omega)$ one assumes that

$$
p(\varepsilon) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\beta}^{-1}\right)
$$

with $\boldsymbol{\beta}$ also having Gamma prior, i.e. we assume $\boldsymbol{\beta}$ to be unknown. Thus, Bayes rule reads

$$
p\left(\boldsymbol{w}, \varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right) \propto p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \varpi, \boldsymbol{\beta}\right) p(\boldsymbol{w}, \varpi, \boldsymbol{\beta})
$$

The posterior is further decoupled to [Tipping, 2001]

$$
p\left(\boldsymbol{w}, \varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right)=\underbrace{p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}, \varpi, \boldsymbol{\beta}\right)}_{\text {convolution of normals } \delta\left(\varpi_{M P}, \boldsymbol{\beta}_{M P}\right)} \underbrace{p\left(\varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right)}
$$

in which is again assumed that all activation functions and observation operator are linear.

Relevance vector machine

In $p\left(\boldsymbol{w}, \varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right)=\underbrace{p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}, \varpi, \boldsymbol{\beta}\right)}_{\text {convolution of normals } \delta\left(\varpi_{M P}, \boldsymbol{\beta}_{M P}\right)} \underbrace{p\left(\varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right)}$ the term

$$
\underbrace{p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}, \boldsymbol{\varpi}, \boldsymbol{\beta}\right)}_{\text {convolution of normals }}=\mathcal{N}\left(\boldsymbol{w} \mid \boldsymbol{\mu}_{w}, \boldsymbol{\Sigma}_{w}\right)
$$

can be estimated using the classical Kalman filter approach.

Relevance vector machine

In $p\left(\boldsymbol{w}, \varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right)=\underbrace{p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}, \varpi, \boldsymbol{\beta}\right)}_{\text {convolution of normals } \delta\left(\varpi_{M P}, \boldsymbol{\beta}_{M P}\right)} \underbrace{p\left(\varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right)}$ the term

$$
\underbrace{p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}, \boldsymbol{\varpi}, \boldsymbol{\beta}\right)}_{\text {convolution of normals }}=\mathcal{N}\left(\boldsymbol{w} \mid \boldsymbol{\mu}_{w}, \boldsymbol{\Sigma}_{w}\right)
$$

can be estimated using the classical Kalman filter approach.
On the other hand, the maximum point $\delta\left(\varpi_{M P}, \boldsymbol{\beta}_{M P}\right)$ is obtained given

$$
p\left(\varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right) \propto p\left(\boldsymbol{y}_{n} \mid \varpi, \boldsymbol{\beta}\right) p(\varpi) p(\boldsymbol{\beta})
$$

by maximizing marginal likelihood

$$
p\left(\boldsymbol{y}_{n} \mid \varpi, \boldsymbol{\beta}\right)=\int p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right) p(\boldsymbol{w} \mid \varpi) d \boldsymbol{w}
$$

Nonlinearity

However, RNN cell is violating linearity assumption:

$$
\begin{gathered}
\boldsymbol{x}_{n}(\omega)=\boldsymbol{W}_{h}(\omega) \boldsymbol{h}_{n-1}(\omega)+\boldsymbol{W}_{u}(\omega) \boldsymbol{u}_{n}(\omega)+\boldsymbol{b}(\omega) \\
\boldsymbol{h}_{n}(\omega)=\boldsymbol{g}\left(\boldsymbol{x}_{n}(\omega)\right) \\
\boldsymbol{y}_{n}(\omega)=Y\left(\boldsymbol{h}_{n}(\omega), \boldsymbol{w}_{y}(\omega)\right)+\boldsymbol{\varepsilon}_{n}(\omega)
\end{gathered}
$$

and thus in

$$
p\left(\boldsymbol{w}, \varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right)=\underbrace{p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}, \varpi, \boldsymbol{\beta}\right)}_{\neq \text {convolution of normals } \delta\left(\varpi_{M P}, \boldsymbol{\beta}_{M P}\right)} \underbrace{p\left(\varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right)}
$$

is hard to estimate both of posteriors directly.

Nonlinear Relevance Vector Machine

The term

$$
p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}, \varpi, \boldsymbol{\beta}\right)
$$

can be estimated by use of the generalized Gauss-Markov Kalman filter:

$$
\boldsymbol{w}_{a}(\omega)=\boldsymbol{w}_{f}(\omega)+\boldsymbol{\varphi}\left(\boldsymbol{y}_{n}\right)-\boldsymbol{\varphi}\left(\boldsymbol{y}_{n}(\omega)\right)
$$

in which $\boldsymbol{w}_{f}(\omega) \sim \mathcal{N}\left(\mathbf{0}, \varpi^{-1}\right)$, and similarly its covariance [Rosic, 2022, in preparation]:

$$
\boldsymbol{w}_{a}=\varphi\left(\boldsymbol{y}_{n}\right)+C_{p}^{1 / 2} C_{\boldsymbol{w}_{a}}^{-1 / 2} \tilde{\boldsymbol{w}}_{a}
$$

Nonlinear Relevance Vector Machine

The term

$$
p\left(\boldsymbol{w} \mid \boldsymbol{y}_{n}, \varpi, \boldsymbol{\beta}\right)
$$

can be estimated by use of the generalized Gauss-Markov Kalman filter:

$$
\boldsymbol{w}_{a}(\omega)=\boldsymbol{w}_{f}(\omega)+\boldsymbol{\varphi}\left(\boldsymbol{y}_{n}\right)-\boldsymbol{\varphi}\left(\boldsymbol{y}_{n}(\omega)\right)
$$

in which $\boldsymbol{w}_{f}(\omega) \sim \mathcal{N}\left(\mathbf{0}, \varpi^{-1}\right)$, and similarly its covariance [Rosic, 2022, in preparation]:

$$
\boldsymbol{w}_{a}=\varphi\left(\boldsymbol{y}_{n}\right)+C_{p}^{1 / 2} C_{\boldsymbol{w}_{a}}^{-1 / 2} \tilde{\boldsymbol{w}}_{a}
$$

On the other hand, the term

$$
\underbrace{p\left(\varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right)}_{\delta\left(\varpi_{M P}, \boldsymbol{\beta}_{M P}\right)}
$$

is hard to estimate directly unless approximating the likelihood.

Approximation

In

$$
\begin{gathered}
\boldsymbol{x}_{n}(\omega)=\boldsymbol{W}_{h}(\omega) \boldsymbol{h}_{n-1}(\omega)+\boldsymbol{W}_{u}(\omega) \boldsymbol{u}_{n}(\omega)+\boldsymbol{b}(\omega) \\
\boldsymbol{h}_{n}(\omega)=\boldsymbol{g}\left(\boldsymbol{x}_{n}(\omega)\right) \\
\boldsymbol{y}_{n}(\omega)=Y\left(\boldsymbol{h}_{n}(\omega), \boldsymbol{w}_{y}(\omega)\right)+\boldsymbol{\varepsilon}_{n}(\omega)
\end{gathered}
$$

Approximation

In

$$
\begin{gathered}
\boldsymbol{x}_{n}(\omega)=\boldsymbol{W}_{h}(\omega) \boldsymbol{h}_{n-1}(\omega)+\boldsymbol{W}_{u}(\omega) \boldsymbol{u}_{n}(\omega)+\boldsymbol{b}(\omega) \\
\boldsymbol{h}_{n}(\omega)=\boldsymbol{g}\left(\boldsymbol{x}_{n}(\omega)\right) \\
\boldsymbol{y}_{n}(\omega)=Y\left(\boldsymbol{h}_{n}(\omega), \boldsymbol{w}_{y}(\omega)\right)+\boldsymbol{\varepsilon}_{n}(\omega)
\end{gathered}
$$

one can linearize the last two equations such that

$$
\begin{gathered}
\boldsymbol{h}_{n}^{(\ell)}(\omega)=\boldsymbol{g}^{(\ell)}\left(\boldsymbol{x}_{n}(\omega)\right)=\boldsymbol{J}_{x} \boldsymbol{x}_{n}(\omega)+\boldsymbol{z}_{h} \\
\boldsymbol{y}_{n}^{(\ell)}(\omega)=Y^{(\ell)}\left(\boldsymbol{h}_{n}(\omega), \boldsymbol{w}_{y}(\omega)\right)+\varepsilon_{n}(\omega)=\boldsymbol{J}_{h} \boldsymbol{h}_{n}^{(\ell)}(\omega)+\boldsymbol{z}_{y}+\boldsymbol{\varepsilon}_{n}(\omega)
\end{gathered}
$$

holds. The linearisation can be also achieved by prevously described relevance vector machine [Rosic, 2022, in preparation].

Gaussian approximation of the marginal likelihood

The point $\delta\left(\varpi_{M P}, \boldsymbol{\beta}_{M P}\right)$ is obtained given

$$
p\left(\varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right) \propto p\left(\boldsymbol{y}_{n} \mid \varpi, \boldsymbol{\beta}\right) p(\varpi) p(\boldsymbol{\beta})
$$

by maximizing $p\left(\boldsymbol{y}_{n} \mid \varpi, \boldsymbol{\beta}\right)=\int p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right) p(\boldsymbol{w} \mid \varpi) d \boldsymbol{w}$ in an iterative fashion [Rosic, 2022, in preparation].

Gaussian approximation of the marginal likelihood

The point $\delta\left(\varpi_{M P}, \boldsymbol{\beta}_{M P}\right)$ is obtained given

$$
p\left(\varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right) \propto p\left(\boldsymbol{y}_{n} \mid \varpi, \boldsymbol{\beta}\right) p(\varpi) p(\boldsymbol{\beta})
$$

by maximizing $p\left(\boldsymbol{y}_{n} \mid \varpi, \boldsymbol{\beta}\right)=\int p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right) p(\boldsymbol{w} \mid \varpi) d \boldsymbol{w}$ in an iterative fashion [Rosic, 2022, in preparation]. After linearisation

$$
\begin{gathered}
\mathbb{E}\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right)=\boldsymbol{\Phi}^{T} \boldsymbol{w}, \quad \boldsymbol{C}\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right)=\boldsymbol{C}_{\boldsymbol{w}} \\
p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right) \approx \mathcal{N}\left(\mu_{\boldsymbol{w}}, \boldsymbol{C}_{\boldsymbol{w}}\right)
\end{gathered}
$$

the mean vector and the covariance matrix are both the functions of the weights \boldsymbol{w}.

Gaussian approximation of the marginal likelihood

The point $\delta\left(\varpi_{M P}, \boldsymbol{\beta}_{M P}\right)$ is obtained given

$$
p\left(\varpi, \boldsymbol{\beta} \mid \boldsymbol{y}_{n}\right) \propto p\left(\boldsymbol{y}_{n} \mid \varpi, \boldsymbol{\beta}\right) p(\varpi) p(\boldsymbol{\beta})
$$

by maximizing $p\left(\boldsymbol{y}_{n} \mid \varpi, \boldsymbol{\beta}\right)=\int p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right) p(\boldsymbol{w} \mid \varpi) d \boldsymbol{w}$ in an iterative fashion [Rosic, 2022, in preparation]. After linearisation

$$
\begin{gathered}
\mathbb{E}\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right)=\boldsymbol{\Phi}^{T} \boldsymbol{w}, \quad \boldsymbol{C}\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right)=\boldsymbol{C}_{\boldsymbol{w}} \\
p\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right) \approx \mathcal{N}\left(\mu_{\boldsymbol{w}}, \boldsymbol{C}_{\boldsymbol{w}}\right),
\end{gathered}
$$

the mean vector and the covariance matrix are both the functions of the weights \boldsymbol{w}. Thus, one can use the law of the total expectation to get

$$
\begin{gathered}
\boldsymbol{\mu}:=\mathbb{E}_{p(\boldsymbol{w} \mid \varpi)}\left(\mathbb{E}\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right)\right)=\mathbf{0} \\
\boldsymbol{C}:=\mathbb{E}_{p(\boldsymbol{w} \mid \varpi)}\left(\boldsymbol{C}\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right)\right)+\boldsymbol{C}_{p(\boldsymbol{w} \mid \varpi)}\left(\mathbb{E}\left(\boldsymbol{y}_{n} \mid \boldsymbol{w}, \boldsymbol{\beta}\right)\right)
\end{gathered}
$$

Sparse LSTM

The complete process can be repeated for LSTM model as well [van Weg, Greve, Rosic, 2021]:

$$
\begin{gathered}
\boldsymbol{x}_{n}(\omega)=\boldsymbol{g}_{c x}(n, \omega) \odot \boldsymbol{x}_{n-1}(\omega)+\boldsymbol{g}_{c u}(n, \omega) \odot \boldsymbol{g}\left(s_{n}(\omega)\right) \\
\boldsymbol{h}_{n}(\omega)=g\left(\boldsymbol{x}_{n}(\omega)\right)
\end{gathered}
$$

in which we choose

$$
\begin{gathered}
\boldsymbol{g}_{c x}(n, \omega)=\boldsymbol{g}_{a}\left(\hat{\boldsymbol{W}}_{x}(\omega) \boldsymbol{x}_{n}(\omega)+\hat{\boldsymbol{W}}_{h}(\omega) \boldsymbol{h}_{n-1}(\omega)+\boldsymbol{b}_{c x}(\omega)\right) \\
\boldsymbol{g}_{c u}(n, \omega)=\boldsymbol{g}_{a}\left(\tilde{\boldsymbol{W}}_{x}(\omega) \boldsymbol{x}_{n}(\omega)+\tilde{\boldsymbol{W}}_{h}(\omega) \boldsymbol{h}_{n-1}(\omega)+\boldsymbol{b}_{c u}(\omega)\right) \\
\boldsymbol{g}_{c}(n, \omega)=\boldsymbol{g}_{a}\left(\overline{\boldsymbol{W}}_{x}(\omega) \boldsymbol{x}_{n}(\omega)+\overline{\boldsymbol{W}}_{h}(\omega) \boldsymbol{h}_{n-1}(\omega)+\boldsymbol{b}_{c}(\omega)\right) \\
\boldsymbol{y}_{n}(\omega)=Y\left(\boldsymbol{h}_{n}(\omega), \boldsymbol{w}_{y}(\omega)\right)
\end{gathered}
$$

Sparse NN for forward and inverse problems

Inverse problem

Given noisy data $\boldsymbol{z} \in \mathcal{Z}$, i.e.

$$
\boldsymbol{z}=Z(\boldsymbol{q})+\boldsymbol{\epsilon}
$$

estimate the unknown $\boldsymbol{q} \in \mathcal{Q}$.

- $\mathcal{X}:=\{\mathcal{Q}, \mathcal{Z}\}$ are Hilbert spaces with the inner product $\langle\cdot, \cdot\rangle_{\mathcal{X}}$
- $\boldsymbol{q} \in \mathcal{Q}$ is the parameter
- $Z: \mathcal{Q} \mapsto \mathcal{Z}$ is possibly nonlinear observation operator
- z are data
- ϵ are noise realisations

Sparse NN for forward and inverse problems

By using Gauss-Markov-Kalman filter

$$
\boldsymbol{q}_{a}(\omega)=\boldsymbol{q}_{f}(\omega)+\boldsymbol{\varphi}\left(\boldsymbol{z}_{m}\right)-\boldsymbol{\varphi}\left(\boldsymbol{y}_{f}(\omega)\right)
$$

we may distinguish two steps [van Dijk, Hakvoort, Rosic, 2022]:

Sparse NN for forward and inverse problems

By using Gauss-Markov-Kalman filter

$$
\boldsymbol{q}_{a}(\omega)=\boldsymbol{q}_{f}(\omega)+\boldsymbol{\varphi}\left(\boldsymbol{z}_{m}\right)-\boldsymbol{\varphi}\left(\boldsymbol{y}_{f}(\omega)\right)
$$

we may distinguish two steps [van Dijk, Hakvoort, Rosic, 2022]:

- Forecast (prediction, uncertainty quantification) step

$$
\operatorname{Map} \phi: \boldsymbol{q}_{f}(\omega) \mapsto \boldsymbol{y}_{f}(\omega)
$$

- Assimilation (update) phase

$$
\operatorname{Map} \varphi: \boldsymbol{y}_{f}(\omega) \mapsto \boldsymbol{q}_{f}(\omega)
$$

Sparse NN for forward and inverse problems

By using Gauss-Markov-Kalman filter

$$
\boldsymbol{q}_{a}(\omega)=\boldsymbol{q}_{f}(\omega)+\boldsymbol{\varphi}\left(\boldsymbol{z}_{m}\right)-\boldsymbol{\varphi}\left(\boldsymbol{y}_{f}(\omega)\right)
$$

we may distinguish two steps [van Dijk, Hakvoort, Rosic, 2022]:

- Forecast (prediction, uncertainty quantification) step

$$
\operatorname{Map} \boldsymbol{\phi}: \boldsymbol{q}_{f}(\omega) \mapsto \boldsymbol{y}_{f}(\omega)
$$

- Assimilation (update) phase

$$
\operatorname{Map} \varphi: \boldsymbol{y}_{f}(\omega) \mapsto \boldsymbol{q}_{f}(\omega)
$$

Both of these maps can be approximated by sparse NNs such that:

$$
\boldsymbol{q}_{a}(\omega)=\boldsymbol{q}_{f}(\omega)+\boldsymbol{\varphi}_{s N N}\left(\boldsymbol{z}_{m}\right)-\boldsymbol{\varphi}_{s N N}\left(\boldsymbol{\phi}_{s N N}\left(\boldsymbol{q}_{f}(\omega)\right)+\boldsymbol{\epsilon}(\omega)\right.
$$

Numerical example

$$
\begin{array}{cl}
m=10 \mathrm{~kg} & v=2 m s^{-1} \quad T=[0,20] \mathrm{ms}, N=41 \\
& x_{\text {punch }}=[-60,60] \mathrm{mm}
\end{array}
$$

Convergence

Sparsity

Sparsity of a) Dense layer, b) LSTM cell

Comparison to point estimate

$$
\mathrm{R}^{2}=1-\frac{\sum_{i}^{m} \sum_{j}^{n_{b}}\left(\boldsymbol{y}_{i j}-\frac{1}{n_{b}} \sum_{n_{b}}\left(\boldsymbol{y}_{i}\right)^{*}\right)^{2}}{\sum_{i}^{m} \sum_{j}^{n_{b}}\left(\boldsymbol{y}_{i j}-\frac{1}{n_{b}} \sum_{n_{b}} \boldsymbol{y}_{i}\right)^{2}}
$$

	n_{m}	epochs $[-]$	time $[\mathrm{s}]$	time per epoch $[\mathrm{s}]$	$\mathrm{R}^{2}[-]$
	16	4000	189	0.047	0.994
Point estimate LSTM	32	4000	189	0.048	0.993
	64	4000	190	0.048	0.994
	128	4000	191	0.048	0.996
ARD-LSTM	16	779	153	0.20	0.993
	64	541	151	0.28	0.995
	128	497	317	0.64	0.998
	434	1403	3.23	0.998	

Expected improvement

Identification

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=-\sigma x+\sigma y \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=\rho x-x z-y \\
& \frac{\mathrm{~d} z}{\mathrm{~d} t}=x y-\beta z
\end{aligned}
$$

$$
x_{0}=[1.508870,-1.531271,25.46091]
$$

$$
\boldsymbol{q}=[\sigma, \rho, \beta]=[10,28,8 / 3]
$$

$$
\boldsymbol{q}(\omega) \sim \mathcal{U}\left(\boldsymbol{q}_{\min }, \boldsymbol{q}_{\max }\right)
$$

$$
\boldsymbol{\mu}_{\boldsymbol{x}_{0}}=\boldsymbol{x}_{0}, \quad \boldsymbol{\sigma}_{\boldsymbol{x}_{0}}^{2}=[2,2,2],
$$

$$
\boldsymbol{x}_{0}(\omega) \sim \mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{x}_{0}}, \sigma_{\boldsymbol{x}_{0}}^{2} I\right)
$$

$$
\boldsymbol{q}_{\min }=[1,1,1], \quad \boldsymbol{q}_{\max }=[30,44.8,5.3] .
$$

State Identification

State Identification

Parameter Identification

Conclusion

Currently done:

- Neural networks (NN) can be represented as delayed differential equations
- Classical training is reqiring more data due to higher parametrisation
- Sparse training using relevance vector machine is only for linear case
- We suggest nonlinear releveance vector machine and apply on NN

To be done:

- study the requirements for convergence and stability
- extend this with the model reduction techniques

Thank you: any questions?

FUTURE d FUTURE

[^0]: ${ }^{\text {a }}$ pics Otowardsdatascience

