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NN for forward and inverse problems

Inverse problem

Given noisy observations

yn+1 = Hzn+1 + εn+1

find the uknown z and q modelled by

zn+1 = G(zn, q) + ηn, n ∈ N

in predefined time interval [0, T ].

the operator G ∈ C(Rd × Rp 7→ Rd)

the operator H ∈ L(Rd 7→ Rm)

(εn), (ηn) are i.i.d sequences

We may distinguish: state and parameter estimation problems.
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NN for forward and inverse problems

In a Bayesian setting one may model q as uncertain following qf (ω) ∼ p(q)
and estimate

p(q|y0, ..., yN ) ∝ p(y0, ..., yN |q)p(q).

For an efficient estimation of the posterior we need two steps:

Forecast (prediction, uncertainty propagation) step

Map φ : qf (ω) 7→ yn,f (ω)

Assimilation (update) phase

Map ϕ : yn,f (ω) 7→ qf (ω)

Both of these maps can be approximated by neural networks.
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Time-dependent neural networks

In this talk we will look at:

standard recurrent neural network

standard long-short term memory network a

apics @towardsdatascience
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Time-dependent neural network

Let be given the nonlinear dynamical system described by

ẋ(t) = f(x(t),xt,u(t), t)

in which x ∈ Rd is the state of the system, u ∈ Rd is the input

, and

xt = {x(τ) : τ ≤ t}

represents the trajectory of the solution in the past.

For the discrete delay one has:

ẋ(t) = f(x(t),x(t− τ1), ...,x(t− τm),u(t), t)

in which τ1 > · · · > τm ≥ 0 denotes the memory of the system.
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ẋ(t) = f(x(t),x(t− τ1), ...,x(t− τm),u(t), t)

in which τ1 > · · · > τm ≥ 0 denotes the memory of the system.
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Time dependent neural network

In a special linear case [Sherstinsky,2020] the previous system can be de-
coupled to

ẋ(t) = Ax(t) +Bh(t− τ0) +Cu(t) + a, h = g(x(t− τ0))

in which g is a nonlinear, saturating, and invertible function of a state.

Taking τ0 = ∆t, and after the discretization by the implicit Euler technique,
one may rewrite the previous system by

xn = W xxn−1 +W hhn−1 +W uun + b

hn = g(xn)

in which
W x = (I −∆tA)−1, W h = ∆tW xB

W u = ∆tW xC, b = ∆tW sa.
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Stability

In order that

xn = W xxn−1 +W hhn−1 +W uun + a

hn = g(xn)

is stable every eignevalue of W s := W x+W h must lie within the complex-
valued unit circle:

for aii << 0, ai 6=j = 0 then W x = (I −∆tA)−1 ≈ −A−1 ≈ 0

for B = BT ,B = V BΛBV
T
B then the stability comes from

W s := −A−1B = −(V T
BA
−1)(V BΛB).

Thus, sufficient condition for stability is

0 < λi(|aii|)−1 < 1, i.e. 0 < λi < |aii|
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Reccurent neural cell

As W x vanishes, the previously described dynamical system becomes

xn = W hhn−1 +W uun + b

hn = g(xn).

This matches the definition of the standard recurrent neural cell (i.e. the
evolution of a hidden state)

hn = g(W hhn−1 +W uun + b)

with the output (observable) defined
as

yn = Y (hn,wy)

in which Y is possibly a nonlinear ob-
servation operator.
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Reccurent neural network

Collecting
w := {W h,W u, b,wy}

and applying recurrency in the time interval [0,∆t, ..., n∆t], one can further
introduce a neural network (NN) as a composition of n functions

gn(h,u,w) := g(W hhn−1 +W uun + b)

such that NN reads

F (h,u,w) := (Y n ◦ gn−1 ◦ gn−2 ◦ ... ◦ g1)(h,u,w).

Here,
Yn(h,u,w) := Y (hn,wy).
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Reccurent neural network

As all cells share weights, we have significant reduction of the parametrisa-
tion compared to the feedforward network.
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Offline gradient descent

The goal is to estimate w given data (yi)i=1,n such that

w∗ = arg minJ(w), J(w) :=

n∑
i=1

1

2
〈yi − ŷi(w),yi − ŷi(w)︸ ︷︷ ︸

NN

〉

is minimized. The gradient based approach

w = w − α ∂J
∂w

then requires estimation of the gradient J that depends on

‖W h‖`−n‖g′(z)‖`−n,

and thus on the properties of both ‖W h‖ and ‖g′(z)‖.
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Offline gradient descent

Looking at
‖|W h‖`−n‖g′(z)‖`−n

one may have the following scenarios

If all 0 < λi(W h) < 1 then ‖|W h‖ < 1, and if ‖g′(z)‖ < 1 then the
gradient vanishes.

If any λi(W h) > 1 then the term ‖W h‖ will exponentially grow, and
thus two scenarios:

I If ‖g′(z)‖ = 0 (the flat regions of the activation function), then the
gradient vanishes

I If ‖g′(z)‖ 6= 0 (quasi-linear regions of the activation function), then
the gradient explodes.

Thus, the RNNs suffer from the so-called gradient problem when
used in long term integration.
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B. Rosić (AMDA, UTwente) Sparse NNs June, 2022 14 / 51



Offline gradient descent

Looking at
‖|W h‖`−n‖g′(z)‖`−n

one may have the following scenarios

If all 0 < λi(W h) < 1 then ‖|W h‖ < 1, and if ‖g′(z)‖ < 1 then the
gradient vanishes.

If any λi(W h) > 1 then the term ‖W h‖ will exponentially grow, and
thus two scenarios:

I If ‖g′(z)‖ = 0 (the flat regions of the activation function), then the
gradient vanishes

I If ‖g′(z)‖ 6= 0 (quasi-linear regions of the activation function), then
the gradient explodes.

Thus, the RNNs suffer from the so-called gradient problem when
used in long term integration.
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Long-short term memory cell

To make the system robust one may generalize previous equation to

xn = gcx(n)� (W xxn−1) + gc(n)� g(sn)

in which
sn := W hvn−1 + gcu(n)�W uun + b

and
vn−1 := gch(n)� hn−1.

Here, controls are continuous, differentiable, monotonically increasing func-
tions that map the domain (−∞,∞) into the range (0, 1) (e.g. logistic
function), i.e. 0 ≤ gcx(n), gcu(n), gc(n) ≤ 1. Taking W x = I one obtains

xn = gcx(n)� xn−1 + gcu(n)� g(sn)

which is a core constituent of the set of formulas defining the cell of the
Vanilla LSTM network [ Hochreiter and Schmidhuber,1997].
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Long-short term memory cell

Thus,
xn = gcx(n)� xn−1 + gcu(n)� g(sn)

hn = g(xn)

in which we choose

gcx(n) = ga(Ŵ xxn + Ŵ hhn−1 + bcx)

gcu(n) = ga(W̃ xxn + W̃ hhn−1 + bcu)

gc(n) = ga(W̄ xxn + W̄ hhn−1 + bc)

This matches the definition of the standard LSTM cell with the output
(observable) defined as

yn = Y (hn,wy)

in which Y is a possibly nonlinear observation operator.
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Offline gradient descent

Collecting all unknown parameters to

w := {Ŵ x, Ŵ h, W̃ x, W̃ , ...}

the goal is to estimate w given data (un,yn) such that

w∗ = arg minJ(w), J(w) :=

n∑
i=1

1

2
〈yi − ŷi(w),yi − ŷi(w)〉

is minimized by using the gradient based approach

w = w − α ∂J
∂w

.
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But, we dont have sparsity...

and cannot include noise in data, or in the input...
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Stochastic RNN formulation

Let the unknown weights w be modelled as uncertain, i.e.

w(ωw) ∈ L2(Ωw,Fw,Pw)

such that the RNN cell based dynamical system becomes stochastic

x̂n(ωw) = W h(ωw)ĥn−1(ωw) +W u(ωw)un(ωw) + b(ωw)

ĥn(ωw) = g(x̂n(ωw))

with the output (observable) defined as

ŷn(ωw) = Y (ĥn(ωw),wy(ωw)) + εn(ωε)

in which εn(ωε) is the prediction of the cell-modelling and/or observation
error, here assumed to be independent of w(ωw).
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Stochastic RNN cell: forward pass

Given w(ωw), ε(ωε) and

Ω := Ωw ×Ωε,F := σ(Fw × Fε),P = PwPε

we may estimate the predicted values

x̂n(ω) = W h(ω)ĥn−1(ω) +W u(ω)un(ω) + b(ω)

ĥn(ω) = g(x̂n(ω))

ŷn(ω) = Y (ĥn(ω),wy(ω)) + εn(ω)

with one of the following methods

sampling (e.g. Monte Carlo, quasi-Monte Carlo, etc.)

approximation based methods (e.g. kernel methods, Gaussian
mixture, etc.)
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Bayesian RNN

Given observation
yn = Y (hn(w),w) + ε(ω̂),

one may estimate the unknown weights w by using Bayes rule

p(w|yn) ∝ p(yn|w)p(w)

in which p(yn|w) denotes the likelihood, and p(w) is the a priori distribu-
tion.

Assuming that all activation functions and observation are linear, and

p(w) ∼ N (wf ,Cw), wf ∼ N (wf (ω),Cw), p(εn) ∼ N (0, Iε)

the Bayes’s rule reduces to the regularized RNN-cost function

JBR :=

(
J(w) +

1

2
〈w −wf ,w −wf 〉Cw +

1

2
〈wf − w̄,wf − w̄〉Cw
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Bayesian RNN

From
w∗ = arg minJBR(w)

the maximum aposterori estimate reads

wa(ω) = wf (ω) +K(yn − ŷn(ω))

in which ”a” denotes a-posteriori random variable, and

K = Cw(ω),yn(ω)C
−1
yn(ω)

is known as the Kalman gain. The previous formula is also known as a
classical Kalman filter estimate.
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Nonlinearity issue

However, RNN cell is violating linearity assumption:

xn(ω) = W h(ω)hn−1(ω) +W u(ω)un(ω) + b(ω)

hn(ω) = g(xn(ω))

yn(ω) = Y (hn(ω),wy(ω)) + εn(ω)

and thus one cannot use the previously described Kalman filter.

On the other hand, estimating the full posterior using Bayes’s rule:

p(w|yn) ∝ p(yn|w)p(w)

would be computationally expensive.
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Gauss-Markov-Kalman RNN

Inverse problem

Instead of estimating p(w|yn), estimate the conditional expectation

E(w|yn) =

∫
wp(w|yn)dw directly without integration.

E(w|B) = PB(w) = arg min
η∈QB

‖w − η‖2Q, B := σ(yn)

Optimality and orthogonality conditions:

∀w̃ ∈ QB : 〈〈w − E(w|σ(y)), w̃〉〉 =
0⇒ w − E(w|σ(y)) ∈ Q⊥B

w = PBw + (I − PB)w

w

E(w|yn)

QB

wap

QBn
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Gauss-Markov-Kalman RNN

Use Doob-Dynkin lemma

E(w|B) = PB(w) = ϕ(yn(w))

with ϕ ∈ L0(Y;Q) such that

w = PBw + (I − PB)w

= ϕ(yn) + (w −ϕ(yn)).

w

E(w|y)

QB

wap

QBn

Then one has

w = ϕ(y)︸ ︷︷ ︸
data

+ (w −ϕ(y))︸ ︷︷ ︸
prior

leading to [Rosic et al, 2012]

wa(ω) = wf (ω) +ϕ(yn)−ϕ(yn(ω))
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Updating more than mean

Inverse problem

Given noisy data estimate the conditional expectation E(R(w)|yn) of
R-valued functions of w, priorly seen as vectorial RVs R(w) - in the
Hilbert space R := L2(Ω,F,P;R), directly without integration.

Conditional mean:
R(w) = w

Conditional covariance:

R(w) = (w − w̄)⊗ (w − w̄), w̄ = E(w)
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Updating more than mean

Hence,
E(R(w)|B) = PB(R(w)) = arg min

η∈RB

‖R(w)− η‖2R

in which closed subspace

RB = L2(Ω, σ(yn),P;R), B := σ(yn).

Optimality condition:

∀η ∈ RB : 〈〈R(w)− E(R(w)|B), η〉〉 = 0⇒ R(w)− E(R(w)|B) ∈ R⊥B

Using Doob-Dynkin lemma

E(R(w)|B) = PB(R(w)) = ΦR(w)(yn)

leads to [Matthies et al., 2016]

R(wa) = R(wf ) + ΦR(w)(yn)− ΦR(w)(yn(wf ))
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Optimal map for covariance

Exact posterior mean

R(w) := w, E(w|yn) = Φw(yn)

Exact posterior correlation

R(w) = w ⊗w, Cc := E(w ⊗w|yn) = Φw⊗w(yn)

Exact posterior covariance

Cp = Cc − Φw(yn)⊗ Φw(yn)
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Optimal map for covariance

In Gauss-Markov-Kalman filter

wa = wf + ϕ(yn)− ϕ(yn,f ), w̃a = wf − ϕ(yn,f )

one has

Cwa = E(w̃a ⊗ w̃a|yn) = E((wf − ϕ(yn,f ))⊗ (wf − ϕ(yn,f ))|yn)

which is not same as

Cp = Cc − ϕ(yn)⊗ ϕ(yn), Cc := E(w ⊗w|yn) = Φw⊗w(yn)

Therefore, the first equation has to be corrected to

wa = ϕ(yn) + C1/2
p C

−1/2
wa w̃a.
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Still, no sparsity only noise
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Sparsity inducing prior

In order to introduce sparsity in weights (and thus connections), we may
introduce the Laplace prior [Tipping, 2001]:

w ∼ e−‖w‖1 ⇒ p(w|$) ∼ N (0,$−1)

in which $ is the diagonal matrix with entries $ii (defining precision)
corresponding to the Gamma prior p($ii). By marginalizing one obtains

p(w) =

∫
p(w|$)p($)d$
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Relevance vector machine

Furthermore, in yn(ω) = Y (hn(w(ω)),w(ω)) + ε(ω) one assumes that

p(ε) ∼ N (0,β−1)

with β also having Gamma prior, i.e. we assume β to be unknown.

Thus,
Bayes rule reads

p(w,$,β|yn) ∝ p(yn|w,$,β)p(w,$,β)

The posterior is further decoupled to [Tipping, 2001]

p(w,$,β|yn) = p(w|yn,$,β)︸ ︷︷ ︸
convolution of normals

p($,β|yn)︸ ︷︷ ︸
δ($MP ,βMP )

in which is again assumed that all activation functions and observation
operator are linear.
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Relevance vector machine

In p(w,$,β|yn) = p(w|yn,$,β)︸ ︷︷ ︸
convolution of normals

p($,β|yn)︸ ︷︷ ︸
δ($MP ,βMP )

the term

p(w|yn,$,β)︸ ︷︷ ︸
convolution of normals

= N (w|µw,Σw)

can be estimated using the classical Kalman filter approach.

On the other hand, the maximum point δ($MP ,βMP ) is obtained given

p($,β|yn) ∝ p(yn|$,β)p($)p(β)

by maximizing marginal likelihood

p(yn|$,β) =

∫
p(yn|w,β)p(w|$)dw.
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Nonlinearity

However, RNN cell is violating linearity assumption:

xn(ω) = W h(ω)hn−1(ω) +W u(ω)un(ω) + b(ω)

hn(ω) = g(xn(ω))

yn(ω) = Y (hn(ω),wy(ω)) + εn(ω)

and thus in

p(w,$,β|yn) = p(w|yn,$,β)︸ ︷︷ ︸
6=convolution of normals

p($,β|yn)︸ ︷︷ ︸
δ($MP ,βMP )

is hard to estimate both of posteriors directly.
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Nonlinear Relevance Vector Machine

The term
p(w|yn,$,β)

can be estimated by use of the generalized Gauss-Markov Kalman filter:

wa(ω) = wf (ω) +ϕ(yn)−ϕ(yn(ω))

in which wf (ω) ∼ N (0,$−1), and similarly its covariance [Rosic, 2022, in
preparation]:

wa = ϕ(yn) + C1/2
p C

−1/2
wa w̃a.

On the other hand, the term

p($,β|yn)︸ ︷︷ ︸
δ($MP ,βMP )

is hard to estimate directly unless approximating the likelihood.
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Approximation

In
xn(ω) = W h(ω)hn−1(ω) +W u(ω)un(ω) + b(ω)

hn(ω) = g(xn(ω))

yn(ω) = Y (hn(ω),wy(ω)) + εn(ω)

one can linearize the last two equations such that

h(`)
n (ω) = g(`)(xn(ω)) = Jxxn(ω) + zh

y(`)n (ω) = Y (`)(hn(ω),wy(ω)) + εn(ω) = Jhh
(`)
n (ω) + zy + εn(ω)

holds. The linearisation can be also achieved by prevously described rele-
vance vector machine [Rosic, 2022, in preparation].
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Gaussian approximation of the marginal likelihood

The point δ($MP ,βMP ) is obtained given

p($,β|yn) ∝ p(yn|$,β)p($)p(β)

by maximizing p(yn|$,β) =

∫
p(yn|w,β)p(w|$)dw in an iterative fash-

ion [Rosic, 2022, in preparation].

After linearisation

E(yn|w,β) = ΦTw, C(yn|w,β) = Cw

p(yn|w,β) ≈ N (µw,Cw),

the mean vector and the covariance matrix are both the functions of the
weights w. Thus, one can use the law of the total expectation to get

µ := Ep(w|$)(E(yn|w,β)) = 0

C := Ep(w|$)(C(yn|w,β)) +Cp(w|$)(E(yn|w,β))
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Sparse LSTM

The complete process can be repeated for LSTM model as well [van Weg,
Greve, Rosic, 2021]:

xn(ω) = gcx(n, ω)� xn−1(ω) + gcu(n, ω)� g(sn(ω))

hn(ω) = g(xn(ω))

in which we choose

gcx(n, ω) = ga(Ŵ x(ω)xn(ω) + Ŵ h(ω)hn−1(ω) + bcx(ω))

gcu(n, ω) = ga(W̃ x(ω)xn(ω) + W̃ h(ω)hn−1(ω) + bcu(ω))

gc(n, ω) = ga(W̄ x(ω)xn(ω) + W̄ h(ω)hn−1(ω) + bc(ω))

yn(ω) = Y (hn(ω),wy(ω))
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Sparse NN for forward and inverse problems

Inverse problem

Given noisy data z ∈ Z, i.e.

z = Z(q) + ε

estimate the unknown q ∈ Q.

X := {Q,Z} are Hilbert spaces with the inner product 〈·, ·〉X
q ∈ Q is the parameter

Z : Q 7→ Z is possibly nonlinear observation operator

z are data

ε are noise realisations

B. Rosić (AMDA, UTwente) Sparse NNs June, 2022 39 / 51



Sparse NN for forward and inverse problems

By using Gauss-Markov-Kalman filter

qa(ω) = qf (ω) +ϕ(zm)−ϕ(yf (ω))

we may distinguish two steps [van Dijk, Hakvoort, Rosic, 2022]:

Forecast (prediction, uncertainty quantification) step

Map φ : qf (ω) 7→ yf (ω)

Assimilation (update) phase

Map ϕ : yf (ω) 7→ qf (ω)

Both of these maps can be approximated by sparse NNs such that:

qa(ω) = qf (ω) +ϕsNN (zm)−ϕsNN (φsNN (qf (ω)) + ε(ω)

B. Rosić (AMDA, UTwente) Sparse NNs June, 2022 40 / 51



Sparse NN for forward and inverse problems

By using Gauss-Markov-Kalman filter

qa(ω) = qf (ω) +ϕ(zm)−ϕ(yf (ω))

we may distinguish two steps [van Dijk, Hakvoort, Rosic, 2022]:

Forecast (prediction, uncertainty quantification) step

Map φ : qf (ω) 7→ yf (ω)

Assimilation (update) phase

Map ϕ : yf (ω) 7→ qf (ω)

Both of these maps can be approximated by sparse NNs such that:

qa(ω) = qf (ω) +ϕsNN (zm)−ϕsNN (φsNN (qf (ω)) + ε(ω)
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Numerical example
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Convergence
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Sparsity

Sparsity of a) Dense layer, b) LSTM cell
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Comparison to point estimate
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Expected improvement
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Identification
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State Identification
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State Identification
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Parameter Identification

B. Rosić (AMDA, UTwente) Sparse NNs June, 2022 49 / 51



Conclusion

Currently done:

Neural networks (NN) can be represented as delayed differential
equations

Classical training is reqiring more data due to higher parametrisation

Sparse training using relevance vector machine is only for linear case

We suggest nonlinear releveance vector machine and apply on NN

To be done:

study the requirements for convergence and stability

extend this with the model reduction techniques
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Thank you: any questions?

FUTURE d FUTURE
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