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Motivation

Goal: build self-learning neural network based meta-models
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Motivation

Goal: build self-learning sparse neural network based meta-models

Original network

3/51

June, 2022

Sparse NNs

B. Rosi¢ (AMDA, UTwente)



NN for forward and inverse problems

Inverse problem

Given noisy observations

Ynt+1 = Hzn-i-l + Ent1

find the uknown z and q modelled by

Zn41 = G(Zna q) + Tin, n €N

in predefined time interval [0, T.
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NN for forward and inverse problems

Inverse problem

Given noisy observations

Ynt+1 = Hzn-i-l + Ent1

find the uknown z and q modelled by

Zn41 = G(Zna q) + Tin, n €N

in predefined time interval [0, T.

e the operator G € C(R? x R? — R%)
@ the operator H € L(R? — R™)

@ (gp), (ny) are i.i.d sequences
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NN for forward and inverse problems

Inverse problem

Given noisy observations

Ynt+1 = HZnJrl + Ent1
find the uknown z and q modelled by
Zn+1 = G(Zna q) +Mny, N E N

in predefined time interval [0, T.

@ the operator G € C(R? x R? — RY)
@ the operator H € L(R? — R™)
@ (g4,),(n,) are i.i.d sequences
We may distinguish: state and parameter estimation problems.
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NN for forward and inverse problems

In a Bayesian setting one may model ¢ as uncertain following g¢(w) ~ p(q)
and estimate

p(qlyo, -, yn) < (Yo, -, yn1a)p(q)-
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NN for forward and inverse problems

In a Bayesian setting one may model ¢ as uncertain following g¢(w) ~ p(q)
and estimate

p(qlyo, -, yn) < (Yo, -, yn1a)p(q)-

For an efficient estimation of the posterior we need two steps:

@ Forecast (prediction, uncertainty propagation) step

Map ¢ : qf(w) = yn,j(w)

@ Assimilation (update) phase

Map ¢ : yp, r(w) = qr(w)
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NN for forward and inverse problems

In a Bayesian setting one may model ¢ as uncertain following g¢(w) ~ p(q)
and estimate

p(qlyo, -, yn) < (Yo, -, yn1a)p(q)-

For an efficient estimation of the posterior we need two steps:

@ Forecast (prediction, uncertainty propagation) step
Map ¢ : qf(w) = Yn,f(w)

@ Assimilation (update) phase
Map ¢ : yn f(w) = ¢s(w)

Both of these maps can be approximated by neural networks.
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Time-dependent neural networks

In this talk we will look at:
@ standard recurrent neural network

@ standard long-short term memory network ?
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Time-dependent neural network

Let be given the nonlinear dynamical system described by

@ (t) = f((t), 2, u(t),t)

in which & € R? is the state of the system, w € R? is the input
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Time-dependent neural network

Let be given the nonlinear dynamical system described by
o(t) = f(x(t), 2, u(t), t)
in which & € R? is the state of the system, u € R? is the input , and
xy ={x(1): 7 < t}

represents the trajectory of the solution in the past.
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Time-dependent neural network

Let be given the nonlinear dynamical system described by
x(t) = f(z(t), 2, u(t),1)
in which & € R? is the state of the system, u € R? is the input , and
xy ={x(1): 7 < t}

represents the trajectory of the solution in the past.

For the discrete delay one has:
z(t) = flx(t),z(t —11), ..., x(t — ), u(t), t)

in which 7 > --- > 7,,, > 0 denotes the memory of the system.
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Time dependent neural network

In a special linear case [Sherstinsky,2020] the previous system can be de-
coupled to

(t) = Azx(t) + Bh(t — 10) + Cu(t) + a, h=g(z(t— 1))

in which g is a nonlinear, saturating, and invertible function of a state.
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Time dependent neural network

In a special linear case [Sherstinsky,2020] the previous system can be de-
coupled to

(t) = Azx(t) + Bh(t — 10) + Cu(t) + a, h=g(z(t— 1))

in which g is a nonlinear, saturating, and invertible function of a state.

Taking 79 = At, and after the discretization by the implicit Euler technique,
one may rewrite the previous system by

Lp = W.txn—l + Whhn—l + Wuun +b

hn = g(wn)
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Time dependent neural network

In a special linear case [Sherstinsky,2020] the previous system can be de-
coupled to

(t) = Azx(t) + Bh(t — 10) + Cu(t) + a, h=g(z(t— 1))

in which g is a nonlinear, saturating, and invertible function of a state.

Taking 79 = At, and after the discretization by the implicit Euler technique,
one may rewrite the previous system by

Lp = W.txn—l + Whhn—l + Wuun +b

hn = g(wn)

in which
W,=(I-AtA)™!, W, =AtW,B

W, =AtW,C, b= AtW;a.
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Stability

In order that
Ty = menfl + Whhnfl + Wuun +a

hn = g(xn)

is stable every eignevalue of W, := W+ W, must lie within the complex-
valued unit circle:
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Stability

In order that
Ty = Wwwnfl + Whhnfl + Wuun +a

hn = g(xn)

is stable every eignevalue of W, := W+ W, must lie within the complex-
valued unit circle:

o for a;; << 0,a,2; =0 then W, = (I — AtA)_1 ~-A"'~0
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Stability

In order that
Ty = wanfl + Whhnfl + Wuun +a

hn = g(mn)

is stable every eignevalue of W, := W+ W, must lie within the complex-
valued unit circle:

o for a;; << 0,a,2; =0 then W, = (I — AtA)_1 ~-A"'~0
o for B = BT7 B = VBABVE then the stability comes from

W,:=-A"'B=—-(VLEA ) (VgAp).
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Stability

In order that
Ty = wanfl + Whhnfl + Wuun +a

hn = g(mn)

is stable every eignevalue of W, := W+ W, must lie within the complex-
valued unit circle:

o for a;; << 0,a,2; =0 then W, = (I — AtA)_1 ~-A"'~0
o for B = BT7 B = VBABVE then the stability comes from

W,:=-A"'B=—-(VLEA ) (VgAp).
Thus, sufficient condition for stability is

0< )\i(|aii|)_1 < 1, e, 0< i < |CL“|
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Reccurent neural cell

As W, vanishes, the previously described dynamical system becomes
x, =Wrh,_1+W,u, +b

hn = g(mn)
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Reccurent neural cell

As W, vanishes, the previously described dynamical system becomes
x, =Wrh,_1+W,u, +b

hn = g(mn)

This matches the definition of the standard recurrent neural cell (i.e. the
evolution of a hidden state)

Yn
hy = g(Whhn_1 + Wyu, + b) ==
b
with the output (observable) defined 4, _, s
2 ( ) " _*%éag hr,
Yn = Y(hna 'wy) W,
7y RNN cell

in which Y is possibly a nonlinear ob-

. Iu'n
servation operator.
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Reccurent neural network

Collecting
w = {W;, W,,bw,}

and applying recurrency in the time interval [0, At, ..., nAt], one can further
introduce a neural network (NN) as a composition of n functions

gn(hv u, w) = g(Whhn—l +W,u, + b)
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Reccurent neural network

Collecting
w = {W;, W,,bw,}

and applying recurrency in the time interval [0, At, ..., nAt], one can further
introduce a neural network (NN) as a composition of n functions

gn(hv u, w) = g(Whhn—l + Wuun + b)
such that NN reads

F(h,u,w):=(Y,ogn-10gn—20...001)(h,u,w).

Here,
Yn(h’v U, w) = Y(hn7 wy)'
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Reccurent neural network

As all cells share weights, we have significant reduction of the parametrisa-
tion compared to the feedforward network.

RNN cell

4 RNN cell
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Offline gradient descent

The goal is to estimate w given data (y;)i—1,, such that

. . "1 R )
w* = argmin J(w), J(w) :=25<yi—yi(w>,yi—yi(w)>
=1 N'N

is minimized. The gradient based approach
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Offline gradient descent

The goal is to estimate w given data (y;)i—1,, such that

. . 1 ) )
w* = argmin J (w), J(w) 1=Z§<yi— J(w), y; — g;(w))
=1 NN

is minimized. The gradient based approach

oJ
w=w-—a—

ow
then requires estimation of the gradient J that depends on
o— -
Wl g (=),

and thus on the properties of both |W || and ||g’(2)]|.
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Offline gradient descent
Looking at
WLl g’ ()1

one may have the following scenarios
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Offline gradient descent

Looking at
- o—
WLl g (=) 17"

one may have the following scenarios

o Ifall 0 < X\;(W}) < 1 then |||[W]| <1, and if ||g'(2)]| < 1 then the
gradient vanishes.
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Offline gradient descent

Looking at

- o—
WLl g (=) 17"
one may have the following scenarios

o Ifall 0 < X\;(W}) < 1 then |||[W]| <1, and if ||g'(2)]| < 1 then the
gradient vanishes.

o If any A\;(W}) > 1 then the term ||W || will exponentially grow, and
thus two scenarios:
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Offline gradient descent

Looking at

- o—
WLl g (=) 17"
one may have the following scenarios

o Ifall 0 < X\;(W}) < 1 then |||[W]| <1, and if ||g'(2)]| < 1 then the
gradient vanishes.

o If any A\;(W}) > 1 then the term ||W || will exponentially grow, and
thus two scenarios:

» If ||g’(2)|| = O (the flat regions of the activation function), then the
gradient vanishes
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Offline gradient descent

Looking at
— -
WLl g’ ()17

one may have the following scenarios

o Ifall 0 < X\;(W}) < 1 then |||[W]| <1, and if ||g'(2)]| < 1 then the
gradient vanishes.

o If any A\;(W}) > 1 then the term ||W || will exponentially grow, and
thus two scenarios:

» If ||g’(2)|| = O (the flat regions of the activation function), then the
gradient vanishes

» If |lg'(2)|| # O (quasi-linear regions of the activation function), then
the gradient explodes.
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Offline gradient descent

Looking at
— -
WLl g’ ()17

one may have the following scenarios

o Ifall 0 < X\;(W}) < 1 then |||[W]| <1, and if ||g'(2)]| < 1 then the
gradient vanishes.
o If any A\;(W}) > 1 then the term ||W || will exponentially grow, and
thus two scenarios:
» If ||g’(2)|| = O (the flat regions of the activation function), then the

gradient vanishes
» If ||g’(2)|| # O (quasi-linear regions of the activation function), then

the gradient explodes.
Thus, the RNNs suffer from the so-called gradient problem when

used in long term integration.
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Long-short term memory cell
To make the system robust one may generalize previous equation to

Ly = gcm(n) O] (Wxxn—l) + gc(n) (O] g(sn)
in which
Sp = Whvn—l + gcu(n) © Wyuu, + b
and

Up—1 = gch(n) Ohp_1.
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Long-short term memory cell
To make the system robust one may generalize previous equation to

Ty = geo(n) © (WoZn-1) + ge(n) © g(sy)
in which
Sn = Wipvp_1+geu(n) © Wyu, + b
and
Vn—1:=Ggen(n) © hp_1.
Here, controls are continuous, differentiable, monotonically increasing func-

tions that map the domain (—o0,00) into the range (0,1) (e.g. logistic
function), i.e. 0 < gep(n),gcu(n), ge(n) < 1.
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Long-short term memory cell

To make the system robust one may generalize previous equation to

Ly = gcz(n) O] (W:Exn—l) + gc(n) (O] g(sn)
in which
Sp = Whvn—l + gcu(n) © Wyuu, + b

and
Up—1 = gch(n) Ohp_1.

Here, controls are continuous, differentiable, monotonically increasing func-
tions that map the domain (—o0,00) into the range (0,1) (e.g. logistic
function), i.e. 0 < ger(n),gcu(n), ge(n) < 1. Taking W, = I one obtains

Ln = gcx(n) O@Tp_1+ gcu(n) © g(sn)

which is a core constituent of the set of formulas defining the cell of the
Vanilla LSTM network [ Hochreiter and Schmidhuber,1997].
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Long-short term memory cell

Thus,
Ty = Gex(n) © Tp—1 + geu(n) © g(sn)

h, = g(xn)
in which we choose

ng(n) - g&(wan + Whh'n—l + bcm)

gcu(n) = g&(WICCn + Whh'n—l + bcu)
gc(n) = ga(wan + Whhnfl + bc)

This matches the definition of the standard LSTM cell with the output
(observable) defined as

Yn = Y(hmwy)

in which Y is a possibly nonlinear observation operator.
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Offline gradient descent

Collecting all unknown parameters to
w:={W, W, W, W, .}

the goal is to estimate w given data (u,,yy) such that

w* = argminJ(w), J(w):= Z %<yz —¥i(w), yi — g;(w))
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But, we dont have sparsity...

and cannot include noise in data, or in the input...

Original network

18 /51

June, 2022

Sparse NNs
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Stochastic RNN formulation

Let the unknown weights w be modelled as uncertain, i.e.

w(wy) € La(2w, Sws Puw)
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Stochastic RNN formulation

Let the unknown weights w be modelled as uncertain, i.e.
w(wy) € La(2w, Sws Puw)

such that the RNN cell based dynamical system becomes stochastic

~

Ty (wow) = Wi(we)hn1(ww) + W (we)tn(we) + b(ww)

~

hn(ww) = g(ﬁ;n(ww))
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Stochastic RNN formulation

Let the unknown weights w be modelled as uncertain, i.e.
w(ww) S L2(~Qwa gwa ]P)w)
such that the RNN cell based dynamical system becomes stochastic

Ty (wow) = Wi(we)hn1(ww) + W (we)tn(we) + b(ww)

ﬁn(ww) = g(fcn(ww))
with the output (observable) defined as
Yp(wWw) = Y(i'/n(ww)awy(ww)) + en(we)
in which &, (w:) is the prediction of the cell-modelling and/or observation

error, here assumed to be independent of w(wy,).
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Stochastic RNN cell: forward pass

Given w(wy),e(w.) and
2:= (2 x QS,S = O'(gw X SE),P =P,P

we may estimate the predicted values

Zn(w) = Wh(w)hp—1(w) + Wy(w)u,(w) + b(w)

R (w) = g(&n(w))
(@) = Y (hn(w), wy(w)) + €n(w)
with one of the following methods

e sampling (e.g. Monte Carlo, quasi-Monte Carlo, etc.)

@ approximation based methods (e.g. kernel methods, Gaussian
mixture, etc.)
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Bayesian RNN

Given observation
Yn =Y (hn(w), w) + (@),
one may estimate the unknown weights w by using Bayes rule

p(wlyn) < p(yn|w)p(w)

in which p(y,|w) denotes the likelihood, and p(w) is the a priori distribu-
tion.
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Bayesian RNN

Given observation
Yn =Y (hn(w), w) + (@),
one may estimate the unknown weights w by using Bayes rule

p(wlyn) < p(yn|w)p(w)

in which p(y,|w) denotes the likelihood, and p(w) is the a priori distribu-
tion.

Assuming that all activation functions and observation are linear, and
p(w) ~ N(wy,Cy), wy~N(wp(w),Cy), plen)~N(0, 1)
the Bayes's rule reduces to the regularized RNN-cost function

1 1
JBRr = (J(w) + §<w —wyp,w—wy)c, + §<wf —w,wy — w>cw)
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Bayesian RNN

From
w* = argmin J pr(w)

the maximum aposterori estimate reads

wo(w) = wi(w) + K(yn — §p(w))

in which "a" denotes a-posteriori random variable, and

—1
K = Cw(w),yn (w) Cyn (w)

is known as the Kalman gain. The previous formula is also known as a
classical Kalman filter estimate.
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Nonlinearity issue

However, RNN cell is violating linearity assumption:
Tn(w) = Wh(w)hp—1(w) + Wy (w)u,(w) + b(w)

hn(w) = g(zn(w))
Yn(w) = Y (hn(w), wy(w)) + en(w)

and thus one cannot use the previously described Kalman filter.
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Nonlinearity issue

However, RNN cell is violating linearity assumption:
Tn(w) = Wh(w)hp—1(w) + Wy (w)u,(w) + b(w)

hn(w> = g(xn(w))
Yn(w) =V (hn(w), wy(w)) + &n(w)
and thus one cannot use the previously described Kalman filter.

On the other hand, estimating the full posterior using Bayes’s rule:

p(w|yn) o p(yn|w)p(w)

would be computationally expensive.
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Gauss-Markov-Kalman RNN

Inverse problem

Instead of estimating p(w|y,,), estimate the conditional expectation

E(w|y,) = /wp('w|yn)d'w directly without integration.
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Gauss-Markov-Kalman RNN

Inverse problem

Instead of estimating p(w|y,,), estimate the conditional expectation

E(w|y,) = /wp('w|yn)d'w directly without integration.

E(w|B) = Py(w) = arg min |w — (%, B :=0o(ys)
nEDy

Optimality and orthogonality conditions:

Yw € Dy : <<w - E(w‘a(y)),ﬂ)» =
0= w—E(wlo(y)) € a@é
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Gauss-Markov-Kalman RNN

Inverse problem

Instead of estimating p(w|y,,), estimate the conditional expectation

E(w|y,) = /wp('w|yn)d'w directly without integration.

E(w|B) = Py(w) = arg min [[w — nll%, B = o(y,)

UISEDY
Optimality and orthogonality conditions: Dy
Vw € 2y : (w — E(wlo(y)), w)) =
0= w—E(w|o(y)) € 25
E(wlyn)

[ w = Pyw + (I — Py)w ]
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Gauss-Markov-Kalman RNN

Use Doob-Dynkin lemma
E(w|B) = Py(w) = (yn(w))
with ¢ € Lo(Y; Q) such that

w = P%w%— (I— P%)'w
= ¢(yn) + (w —@(yn))-

Then one has

w = ¢(y)+(w—(y))
N~ S——
data prior

leading to [Rosic et al, 2012]

[ we(w) = wi(w) + @(Yn) — P(Yn(w)) ]
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Updating more than mean

Inverse problem

Given noisy data estimate the conditional expectation E(R(w)|y,) of
‘R-valued functions of w, priorly seen as vectorial RVs R(w) - in the
Hilbert space # := Lo(£2,5F,P; R), directly without integration.

@ Conditional mean:
R(w) =w

@ Conditional covariance:
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Updating more than mean

Hence,

E(R(w)|B) = Pp(R(w)) = arg min||R(w) — 7|5
UISZH3

in which closed subspace
Ry = La(2,0(yn),P;R), B :=o0(yn).

Optimality condition:

Vi € By : (R(w) — E(R(w)|B),n) = 0 = R(w) — E(R(w)|B) € %
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Updating more than mean

Hence,

E(R(w)|B) = Pp(R(w)) = arg min||R(w) — 7|5
UISZH3

in which closed subspace
Kp = La(£2,0(yn), P;R), B :=o0(yn).
Optimality condition:
i € Z 1 (R(w) — E(R(w)|B), 1) = 0= R(w) — E(R(w)|B) € %
Using Doob-Dynkin lemma
E(R(w)|B) = Py(R(w)) = PR(w)(Yn)

leads to [Matthies et al., 2016]

R(w,) = R(wf) + (pR(w)(yn) - (pR(w)(yn(wf))
Sparse NNs June, 2022 27 /51



Optimal map for covariance

@ Exact posterior mean
R(w) :=w, E(w|yn) = Pw(yn)
@ Exact posterior correlation
Rw)=ww, C.:=Ew®w|y,) = Pwsew(Yn)
@ Exact posterior covariance

Cp=0Cc— Doy (Yn) @ Py (Yn)
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Optimal map for covariance

In Gauss-Markov-Kalman filter

Wo = Wi+ @(Yn) = 0(Ynf), Wa=ws—P(Ynf)
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Optimal map for covariance

In Gauss-Markov-Kalman filter

Wo = Wi+ @(Yn) = 0(Ynf), Wa=ws—P(Ynf)

one has

Cw, = E(Wwa @ walyn) = E((wy — @(Yns)) @ (w5 — @(Yn,f))|Yn)
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Optimal map for covariance

In Gauss-Markov-Kalman filter
Wo = w5+ o(Yn) = P(Yny); Wa=ws—(Yn,f)
one has
Cw, = E(wa @ Walyn) = E((wf — ¢(yn,f)) @ (w5 = @(Yn.1))|Yn)
which is not same as

Cp=0Cc— ©(Yn) @ (Yn), Cec:=E(w @ w|yn) = Pwsw(Yn)

B. Rosi¢ (AMDA, UTwente) Sparse NNs June, 2022 29 /51



Optimal map for covariance

In Gauss-Markov-Kalman filter
Wo = Ws + 9(Yn) = L(Yns), Wa=ws—0(Yny)
one has
Cw, = E(wa @ Walyn) = E((wf — ¢(yn,f)) @ (w5 = @(Yn.1))|Yn)
which is not same as
Cp=Cec—p(Yn) @ p(yn), Cc=E(ww|y,) = Puwsw(yn)
Therefore, the first equation has to be corrected to

w, = ©(Yn) + 05/201;611/2@,1.
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Still, no sparsity only noise
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Sparsity inducing prior

In order to introduce sparsity in weights (and thus connections), we may
introduce the Laplace prior [Tipping, 2001]:

w~ e vl = p(wlw) ~ V(0,71

in which zo is the diagonal matrix with entries w;; (defining precision)
corresponding to the Gamma prior p(w;;). By marginalizing one obtains

plw) = / p(w|w)p(e)des

(a) Multivariate Gaussian. (b) Multivariate Student-t. () Multivariate Laplace.
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Relevance vector machine

Furthermore, in y,(w) = Y (hy(w(w)), w(w)) + €(w) one assumes that

p(e) ~N(0,87)

with 3 also having Gamma prior, i.e. we assume 3 to be unknown.
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Relevance vector machine

Furthermore, in y,(w) = Y (hy(w(w)), w(w)) + €(w) one assumes that
p(e) ~N(0,871)

with 3 also having Gamma prior, i.e. we assume 3 to be unknown. Thus,
Bayes rule reads

p(w, @, Blyn) X p(yn|w, =, B)p(w, =, B)
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Relevance vector machine

Furthermore, in y,(w) = Y (hy(w(w)), w(w)) + €(w) one assumes that
p(e) ~N(0,871)

with 3 also having Gamma prior, i.e. we assume 3 to be unknown. Thus,
Bayes rule reads

p(w, @, Blyn) X p(yn|w, =, B)p(w, =, B)

The posterior is further decoupled to [Tipping, 2001]

p(’wawaﬁkyn): p(’LU|yn,w,,@) p(w’ﬁ‘yn)

/

Vv
convolution of normals §(wo s p,Brrp)

in which is again assumed that all activation functions and observation
operator are linear.
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Relevance vector machine

In p(w, =, Blyn) = p(w|yn,=,B8) p(ww,Bly,) the term

convolution of normals §(zopsp,Brrp)

p(wlyn, @, B) = N(w|pw, Zw)
—— —

convolution of normals

can be estimated using the classical Kalman filter approach.
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Relevance vector machine

In p(w, =, Blyn) = p(w|yn,=,B8) p(ww,Bly,) the term

convolution of normals §(zopsp,Brrp)

p(wlyn, @, B) = N(w|py, Zw)
———

convolution of normals

can be estimated using the classical Kalman filter approach.

On the other hand, the maximum point é(zoasp, Barp) is obtained given

p(w@, Blyn) x p(ya|w, B)p(w=)p(B)

by maximizing marginal likelihood

p(yn‘waﬁ) = /p(yn\w,,@)p(w\w)dw

B. Rosi¢ (AMDA, UTwente) Sparse NNs June, 2022 33/51



Nonlinearity

However, RNN cell is violating linearity assumption:
Tp(w) = Wh(w)hp—1(w) + Wy (w)u,(w) + b(w)

hn(w) = g(xn(w))
Yn(w) =Y (hn(w), wy(w)) + €n(w)

and thus in

p(w, @, Bly,) = p(w|lyn,@,B) plw,Blyn)

#convolution of normals §(w rrp,Brp)

is hard to estimate both of posteriors directly.
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Nonlinear Relevance Vector Machine

The term
p(w|yn7w7:8)

can be estimated by use of the generalized Gauss-Markov Kalman filter:

wa(w) = wy(w) + ¢(Yn) — P(Yn(w))

in which w (w) ~ N (0,70~ "), and similarly its covariance [Rosic, 2022, in
preparation]:

wo = ¢(yn) + C;/QC;i/tha.
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Nonlinear Relevance Vector Machine

The term
p(w|yn7w7:8)

can be estimated by use of the generalized Gauss-Markov Kalman filter:

wa(w) = wy(w) + ¢(Yn) — P(Yn(w))

in which w (w) ~ N (0,70~ "), and similarly its covariance [Rosic, 2022, in
preparation]:

wo = ¢(yn) + C;/QC;i/zﬂja.
On the other hand, the term

(=, Blyn)
N——r

0(wrp,Brp)

is hard to estimate directly unless approximating the likelihood.
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Approximation

Tn(w) = Wh(w)hp—1(w) + Wy (w)u,(w) + b(w)
hn(w) = g(mn(w)
Yn(w) =Y (hn(w), wy(w)) + en(w)
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Approximation

Tn(w) = Wh(w)hp—1(w) + Wy (w)u,(w) + b(w)
hn(w) = g(zn(w))
Yn(w) =Y (hn(w), wy(w)) + €n(w)
one can linearize the last two equations such that
BO(W) = 9O (@n(w)) = Tua(w) + 21

Yy (@) = YO (hy(w), wy (W) + en(w) = Tnhi (@) + 2, + €n(w)

holds. The linearisation can be also achieved by prevously described rele-
vance vector machine [Rosic, 2022, in preparation].

B. Rosi¢ (AMDA, UTwente) Sparse NNs June, 2022 36 /51



Gaussian approximation of the marginal likelihood

The point d(zoprp, Barp) is obtained given

p(w, Blyn) x p(ya|w, B)p(w=)p(B)

by maximizing p(y,|to, 8) = /p(yn]w,ﬁ)p(’w|w)dw in an iterative fash-
ion [Rosic, 2022, in preparation].
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Gaussian approximation of the marginal likelihood

The point d(zoprp, Barp) is obtained given

p(w, Blyn) x p(ya|w, B)p(w=)p(B)

by maximizing p(y,|to, 8) = /p(yn]w,ﬁ)p(w|w)dw in an iterative fash-

ion [Rosic, 2022, in preparation]. After linearisation

E(yn’wvﬁ) = ¢Tw7 C(yn‘wwﬂ) = Cuy

p(yn|w7/3) ~ N(Mw; C’w)7

the mean vector and the covariance matrix are both the functions of the
weights w.
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Gaussian approximation of the marginal likelihood

The point d(zoprp, Barp) is obtained given

p(w, Blyn) x p(ya|w, B)p(w=)p(B)

by maximizing p(y,|to, 8) = /p(ynw,ﬁ)p(w|w)dw in an iterative fash-

ion [Rosic, 2022, in preparation]. After linearisation

E(yn’wvﬁ) = ¢Tw7 C(yn‘wwﬂ) = Cuy

p(yn|w7/3) ~ N(Mw; C’w)7

the mean vector and the covariance matrix are both the functions of the
weights w. Thus, one can use the law of the total expectation to get

M= Ep(w\w)(]E(yn’wug)) =0
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Sparse LSTM

The complete process can be repeated for LSTM model as well [van Weg,
Greve, Rosic, 2021]:

T (W) = Gz (N, W) © Tp—1(wW) + geu(n, w) © g(sn(w))

hn(w) = g(n(w))

in which we choose
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Sparse NN for forward and inverse problems

Inverse problem
Given noisy data z € Z, i.e.

z=17(q) te

estimate the unknown q € Q.

o X :={Q, Z} are Hilbert spaces with the inner product (-, )~
@ g € Q is the parameter

@ 7 :Qw~— Zis possibly nonlinear observation operator

@ z are data

@ € are noise realisations
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Sparse NN for forward and inverse problems
By using Gauss-Markov-Kalman filter

qa(w) = g (W) + @(zm) — p(ys(w))

we may distinguish two steps [van Dijk, Hakvoort, Rosic, 2022]:
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Sparse NN for forward and inverse problems
By using Gauss-Markov-Kalman filter

qa(w) = g (W) + @(zm) — p(ys(w))

we may distinguish two steps [van Dijk, Hakvoort, Rosic, 2022]:

@ Forecast (prediction, uncertainty quantification) step

Map ¢ : qf(w) = yys(w)

@ Assimilation (update) phase

Map ¢ : yr(w) — qr(w)
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Sparse NN for forward and inverse problems
By using Gauss-Markov-Kalman filter

qa(w) = g (W) + @(zm) — p(ys(w))

we may distinguish two steps [van Dijk, Hakvoort, Rosic, 2022]:

@ Forecast (prediction, uncertainty quantification) step

Map ¢ : qf(w) = yys(w)

@ Assimilation (update) phase

Map ¢ : yr(w) — qr(w)
Both of these maps can be approximated by sparse NNs such that:

qa(w) = qf(w) + <PSNN(Zm) - ‘PSNN((pSNN(qf(w)) + E(w)
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Numerical example

m=10kg v=2ms"" T =[0,20]ms, N =41

Tpunch = [—60, 60]mm

u(z,y, z,t) =7

Punch position
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Convergence

negative log likelihood [-]

0 100 200 300 400 500 600 700 800
number of epochs [-]
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Sparsity

wof+—F—F+—F+—F—F—= =16 100 < np=16
- =32 nm=32
. — np=64 80 Nm=64
—- np=128 nm=128
S g 60
z z
@ o
2 40 g 40
& &
20 20
0 0
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

number of epochs [-] number of epochs [-]

Sparsity of a) Dense layer, b) LSTM cell
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Comparison to point estimate

I > b v (T znb(ym)"’,

2
PIHD I (yzj — i L yi)

nm, epochs [—] time [s] time per epoch [s] R[]

16 4000 189 0.047 0.994

. . 32 4000 189 0.048 0.993
Point estimate LSTM 64 4000 190 0.048 0.994
128 4000 191 0.048 0.996

16 779 153 0.20 0.993

32 541 151 0.28 0.995

ARD-LSTM 64 497 317 0.64 0.998

128 434 1403 3.23 0.998
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Expected improvement

~o- Expected improvement

o Expected improvement
—— Maximum expected improvement

g

60

€ [mm]
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|dentification

— = —ox + oy,
dt .
dy
Pl LAk st
dz 4t
— =2y — fz.
FT A
3t
xo = [1.508870, —1.531271, 25.46091] 30
a=0.p.8] = [10,28,8/3] Rasp \
20 J),u‘ |
q(w) ~ U(gmin; Gmaz)s - —
Mz, = Zo, a’in = [2= 2, 2]’ 10F
20(w) ~ N(kay: 93, 1),s S
[
-20 & - 0
Gmin = [1,1,1],  @mae = [30,44.8,5.3]. x()
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State ldentification

C195% |
—— Mean
" - - - Truth |4
+ y”l N |
0
0 1 2 3 4 5 6 7 8 9 10
time
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State ldentification

0
0 1 2 3 4 5 6 7 8 9 10
time
B. Rosi¢ (AM UTwente) Sparse NNs June, 2022 48 /51




Parameter Identification
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Conclusion

Currently done:

@ Neural networks (NN) can be represented as delayed differential
equations

@ Classical training is reqiring more data due to higher parametrisation
@ Sparse training using relevance vector machine is only for linear case

@ We suggest nonlinear releveance vector machine and apply on NN

To be done:
@ study the requirements for convergence and stability

@ extend this with the model reduction techniques
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Thank you: any questions?

B. Rosi¢ (AM

UTwente)

Im trying to
not dropout

FUTURE d FUTURE
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