

Bayesian inference: Interacting particle approaches

Sebastian Reich

University of Potsdam & SFB 1294 Data Assimilation

June 9, 2022

Bayesian inference, UP & SFB 1294

Computational Bayesian inference

- Coupling of measures
- Invariance and ergodicity
- Interacting particle systems for sampling
 - Overdamped Langevin dynamics
 - Gradient log density estimator
- Salman–Wasserstein gradient flow structure
 - Gradient flow structures
 - Numerical implementation

Computational Bayesian inference

Publications:

SR, A dynamical systems perspective for intermittent data assimilation, BIT, 51, 235–359, 2011

SR, Data assimilation: The Schrödinger perspective, Acta Numerica, 635–711, 2019

Daniel Huang, Jiaoyang Huang, SR & Andrew Stuart, Efficient derivative-free Bayesian inference for large scale inverse problems, arXiv:2204.04386

Edoardo Calvello, SR & Andrew Stuart, Ensemble Kalman methods: A mean field perspective, in preparation

Prior (forecast):

$$\Theta_f \sim \pi_f$$

negative log-likelihood:

nonl. regression:
$$l(y|\theta) = \frac{1}{2}(g(\theta) - y)^{\mathrm{T}}R^{-1}(g(\theta) - y)$$

logistic regression: $l(y|\theta) = -y \log \sigma(\theta^{\mathrm{T}}\phi_x) - (1 - y) \log(1 - \sigma(\theta^{\mathrm{T}}\phi_x))$

g forward map, R error covariance matrix, y the data $(y \in \mathbb{R}/y \in \{0,1\})$, ϕ_x feature map, $x \in \mathbb{R}^J$, $\sigma(t) = 1/(1 + \exp(-t))$.

Bayesian posterior (analysis):

$$\pi_{\mathrm{a}}(heta|y) \propto e^{-l(y| heta)} \pi_{\mathrm{f}}(heta).$$

Monte Carlo: Compute realisations $\theta_{a}^{(i)}$, i = 1, ..., M, from a random variable (RV)

 $\Theta_{\rm a} \sim \pi_{\rm a}$

to approximate posterior expectation values

$$\mathbb{E}_{\mathrm{a}}[f] \approx rac{1}{M} \sum_{i=1}^{M} f(\theta_{\mathrm{a}}^{(i)}).$$

Catch: The random variable Θ_a is **not fully specified** by Bayes' theorem:

- approaches based on coupling of measures,
- and those based on invariance and ergodicity.

Find a pair of random variables

$$(\Theta_{\rm f}, \Theta_{\rm a}) \sim \pi_{\rm fa}(\theta_{\rm f}, \theta_{\rm a}) = \pi_{\rm a}(\theta_{\rm a}|\theta_{\rm f}) \pi_{\rm f}(\theta_{\rm f})$$

such that

$$\Theta_{\rm f} \sim \pi_{\rm f}, \qquad \Theta_{\rm a} \sim \pi_{\rm a} \,.$$
 (1)

Catch: Joint distribution $\pi_{fa}(\theta_f, \theta_a)$ is not uniquely determined by its marginals (1):

- Examples: sequential Monte-Carlo, ensemble Kalman filter
- optimal transportation (minimise expected distance between Θ_f and Θ_a ; transport equation)
- Schrödinger bridges (minimise the Kullback–Leibler divergence to some reference measure; stochastic optimal control)

Do the opposite: successively decouple.

Define a sequence of random variables (stochastic process) Θ_{τ} , $\tau \ge 0$, with $\Theta_0 = \Theta_f$ and

 $\Theta_{\mathrm{a}} := \lim_{\tau \to \infty} \Theta_{\tau} \sim \pi_{\mathrm{a}}$.

Catch: Such stochastic processes typically satisfy:

- $\Theta_0 \sim \pi_a$ implies $\Theta_\tau \sim \pi_a$ for all $\tau > 0$ (invariance) and
- Θ_a is independent of $\Theta_0 = \Theta_f$ (ergodicity), that is,

$$\pi_{\mathrm{fa}}(heta_{\mathrm{f}}, heta_{\mathrm{a}}) = \pi_{\mathrm{f}}(heta_{\mathrm{f}}) \, \pi_{\mathrm{a}}(heta_{\mathrm{a}}|\mathbf{y}) \, .$$

Examples:

• Langevin dynamics

$$\mathrm{d}\Theta_{\tau} = -\nabla_{\theta} V(\Theta_{\tau}) \,\mathrm{d}\tau + \sqrt{2} \,\mathrm{d}W_{\tau} \,. \tag{2}$$

with

$$V(heta) = -\log \pi_{\mathrm{a}}(heta|y)$$
 .

The SDE (2) is ergodic with unique invariant measure π_a under appropriate conditions.

 In discrete time, we got Markov chain Monte Carlo (MCMC) methods.

Discrete-time Langevin:

stochastic process $\{\Theta_n\}_{n\geq 0}, \qquad \lim_{n\to\infty} \Theta_n \sim \pi_{\mathrm{a}}.$

Idea.¹ Let $\Theta_n \sim \tilde{\pi}_n$; for any $\gamma > 0$:

$$\begin{array}{ll} \text{diffusion:} & \tilde{\pi}_{n+1/2} \propto \tilde{\pi}_n^{1/(1+\gamma)}, \\ \text{Bayes/drift:} & \tilde{\pi}_{n+1} \propto \pi_{\mathrm{a}}^{\gamma/(1+\gamma)} \tilde{\pi}_{n+1/2} \end{array}$$

Theorem. If $\tilde{\pi}_n = \pi_a$, then $\tilde{\pi}_{n+1} = \pi_a$. Convergence is exponential for all $\gamma > 0$.

¹Huang et al, arXiv:2204.04386

Diffusion step:

$$\Theta_n \sim \tilde{\pi}_n = \mathrm{N}(\mu_n, \Sigma_n)$$

implies

$$\tilde{\pi}_{n+1/2} = \mathrm{N}(\mu_n, (1+\gamma)\Sigma_n).$$

Update step:

deterministic: stochastic:

$$\Theta_{n+1/2} = \mu_n + (1+\gamma)^{1/2} (\Theta_n - \mu_n)$$

$$\Theta_{n+1/2} = \Theta_n + \gamma^{1/2} \Sigma_n^{1/2} \Xi_n, \quad \Xi_n \sim \mathrm{N}(0, I).$$

Bayes/drift step:

i) Extended observations

$$\tilde{y}_{\mathrm{obs}} = \left(egin{array}{c} y_{\mathrm{obs}} \\ \mu_0 \end{array}
ight), \quad \tilde{G} = \left(egin{array}{c} G \\ I \end{array}
ight) \quad \tilde{R} = \left(egin{array}{c} R & 0 \\ 0 & \Sigma_0 \end{array}
ight).$$

ii) negative log "likelihood" function

$$ilde{l}(heta| ilde{y}_{
m obs}) := -\log \pi_{
m a}(heta) = rac{1}{2} (ilde{G} heta - ilde{y}_{
m obs})^{
m T} ilde{R}^{-1} (ilde{G} heta - ilde{y}_{
m obs}).$$

iii) Kalman filter step with $\tau = \gamma/(1 + \gamma)$, likelihood $\tilde{l}(\theta|\tilde{y}_{obs})$ and prior $N(\mu_{n+1/2}, \Sigma_{n+1/2})$.

Continuous-time limit:² $(\gamma \rightarrow 0)$

$$egin{aligned} \dot{\Theta}_{ au} &= -rac{1}{2} \Sigma_{\Theta_{ au}} \left\{ G^{\mathrm{T}} R^{-1} (G \Theta_{ au} + G \mu_{\Theta_{ au}} - 2 y_{\mathrm{obs}}) +
ight. \ & \left. \Sigma_{0}^{-1} (\Theta_{ au} + \mu_{\Theta_{ au}} - 2 \mu_{0})
ight\} + \Sigma_{\Theta_{ au}}^{1/2} \dot{W}_{ au}. \end{aligned}$$

Alternatively:

$$\dot{\Theta}_{ au} = -rac{1}{2} \Sigma_{\Theta_{ au}} \left\{ G^{\mathrm{T}} R^{-1} (G \Theta_{ au} + G \mu_{\Theta_{ au}} - 2 y_{\mathrm{obs}}) + \Sigma_0^{-1} (\Theta_{ au} + \mu_{\Theta_{ au}} - 2 \mu_0) \right\} + 2 (\Theta_{ au} - \mu_{\Theta_{ au}}).$$

²Pidstrigach & SR, FoCM, 2022, Huang et al, arXiv:2204.04386

Interacting particle systems for sampling

Publications:

Sahani Pathiraja & SR, Discrete gradients for computational Bayesian inference, J. Comput. Dyn., 6, 236–251, 2019.

Dimitra Maoutsa, SR & Manfred Opper, **Interacting particle solutions of Fokker–Planck equations through gradient-log-density estimation**, Entropy, 22, 0802, 2020

Nonlinear SDE:

$$\mathrm{d}\Theta_{\tau} = f(\Theta_{\tau})\mathrm{d}\tau + \sqrt{2\sigma}\mathrm{d}W_{\tau}, \qquad \Theta_{0} \sim \pi_{0},$$

 W_{τ} standard Brownian motion and e.g. $f(\theta) = \nabla_{\theta} \log \pi_{a}(\theta|y)$. Fokker–Planck equation: $\Theta_{\tau} \sim \pi_{\tau}$

$$\partial_{\tau} \pi_{\tau} = -\nabla \cdot (\pi_{\tau} f) + \sigma \Delta \pi_{\tau},$$

= $-\nabla \cdot (\pi_{\tau} \{ f - \sigma \nabla \log \pi_{\tau} \})$

Nonlinear SDE:

$$\mathrm{d}\Theta_{\tau} = f(\Theta_{\tau})\mathrm{d}\tau + \sqrt{2\sigma}\mathrm{d}W_{\tau}, \qquad \Theta_{0} \sim \pi_{0},$$

 W_{τ} standard Brownian motion and e.g. $f(\theta) = \nabla_{\theta} \log \pi_{a}(\theta|y)$. Fokker–Planck equation: $\Theta_{\tau} \sim \pi_{\tau}$

$$\partial_{ au} \pi_{ au} = -
abla \cdot (\pi_{ au} f) + \sigma \Delta \pi_{ au}, \ = -
abla \cdot (\pi_{ au} \{ f - \sigma
abla \log \pi_{ au} \})$$

Mean-field ODE

$$\dot{\Theta}_{\tau} = f(\Theta_{\tau}) - \sigma \nabla \log \pi_{\tau}.$$

Gaussian case:

$$\Theta_{ au} \sim \mathrm{N}(\mu_{ au}, \Sigma_{ au}) \implies -\nabla \log \pi_{ au}(heta) = \Sigma_{ au}^{-1}(heta - \mu_{ au}).$$

³Carrillo et al, Calc. Var. Part. Diff. Eqs, 2019

Gaussian case:

$$\Theta_{\tau} \sim \mathrm{N}(\mu_{\tau}, \Sigma_{\tau}) \implies -\nabla \log \pi_{\tau}(\theta) = \Sigma_{\tau}^{-1}(\theta - \mu_{\tau}).$$

Interacting particle dynamics: $\Theta_0^{(i)} \sim \pi_0$, i = 1, ..., M, $\dot{\Theta}_{\tau}^{(i)} = f(\Theta_{\tau}^{(i)}) - \sigma \nabla \log \tilde{\pi}_{\tau}(\Theta_{\tau}^{(i)})$

with approximative density $\tilde{\pi}_{\tau}$:

Gaussian

$$ilde{\pi}_{ au}(heta) = \mathrm{n}(heta; \mu^{\mathcal{M}}_{ au}, \Sigma^{\mathcal{M}}_{ au})$$

• Gaussian mixture³

$$ilde{\pi}_{ au}(heta) = rac{1}{M} \sum_{i=1}^M \mathrm{n}(heta; \Theta^{(i)}_{ au}, \gamma I).$$

³Carrillo et al, Calc. Var. Part. Diff. Eqs, 2019

Variational formulation:⁴

$$\partial_{\alpha} \log \pi := r^{(\alpha)} + \arg \min_{\phi} \mathcal{L}_{\alpha}[\phi, \pi]$$

 $\partial_{\alpha} = \partial_{\theta^{(\alpha)}}, r^{(\alpha)}$ the α th component of an appropriate reference function $r : \mathbb{R}^{N_{\theta}} \to \mathbb{R}^{N_{\theta}}$,

⁴A. Hyvärinen, J. Mach. Learn. Res., 2005

Estimator:

$$\mathcal{L}_{\alpha}[\phi, \pi_{\tau}] \approx \mathcal{L}_{\alpha}[\phi, \pi_{\tau}^{\mathcal{M}}]$$

$$:= \frac{1}{\mathcal{M}} \sum_{i=1}^{\mathcal{M}} \left(\phi^{2}(\Theta_{\tau}^{(i)}) + 2r^{(\alpha)}(\Theta_{\tau}^{(i)}) \phi(\Theta_{\tau}^{(i)}) + 2\partial_{\alpha}\phi(\Theta_{\tau}^{(i)}) \right)$$

and

$$\partial_{\alpha} \log \pi_{\tau}(\theta) \approx r^{(\alpha)}(\theta) + \arg \min_{\phi \in \mathcal{F}} \mathcal{L}_{\alpha}[\phi, \pi_{\tau}^{\mathcal{M}}](\theta).$$

Estimator:

$$\mathcal{L}_{\alpha}[\phi, \pi_{\tau}] \approx \mathcal{L}_{\alpha}[\phi, \pi_{\tau}^{M}]$$

:= $\frac{1}{M} \sum_{i=1}^{M} \left(\phi^{2}(\Theta_{\tau}^{(i)}) + 2r^{(\alpha)}(\Theta_{\tau}^{(i)}) \phi(\Theta_{\tau}^{(i)}) + 2\partial_{\alpha}\phi(\Theta_{\tau}^{(i)}) \right)$

and

$$\partial_{\alpha} \log \pi_{\tau}(\theta) \approx r^{(\alpha)}(\theta) + \arg \min_{\phi \in \mathcal{F}} \mathcal{L}_{\alpha}[\phi, \pi_{\tau}^{\mathcal{M}}](\theta).$$

Interacting particle ODE: $i = 1, \ldots, M$,

$$\dot{\Theta}_{\tau}^{(i)} = f(\Theta_{\tau}^{(i)}) - \sigma\left(r^{(\alpha)}(\Theta_{\tau}^{(i)}) + \phi_{\tau}^{(\alpha)}(\Theta_{\tau}^{(i)})\right).$$

with

$$\phi_{\tau}^{(\alpha)} := \arg\min_{\phi \in \mathcal{F}} \mathcal{L}_{\alpha}[\phi, \pi_{\tau}^{M}]$$

Remarks

• Approximation space \mathcal{F} : (i) *L*-dimensional (random feature) space

$$\phi_{ au}(heta) = \sum_{l=1}^{L} lpha_{ au}^{(l)} \phi_l(heta)$$

(ii) RKHS with kernel $k(\theta, \theta')$

$$\phi_{\tau}(\theta) = \sum_{i=1}^{M} \alpha_{\tau}^{(i)} k(\theta, \Theta_{\tau}^{(i)})$$

• (ii) with $\gamma = 1$, $f(\theta) = \nabla_{\theta} \log \pi_{a}(\theta|y)$, r = f, leads equations related to Stein variational gradient descent.⁵

⁵Q. Liu & D. Wang, NEURIPS, 2016

Example: Chaotic attractor Lorenz 63

Kalman-Wasserstein gradient flow structure

Publications:

SR & Colin Cotter, **Ensemble filter techniques for intermittent data assimilation**, in Radon Series on Computational and Applied Mathematics, Volume 13, 91-134, 2013.

Alfredo Garbuno-Inigo, Nikolas Nüsken & SR, **Affine invariant interacting Langevin** dynamics for **Bayesian inference**, SIADS, 19, 1633–1658, 2020.

SR & Simon Weissmann, Fokker–Planck particle systems for Bayesian inference: Computational approaches, SIAM/ASA JUQ, 9, 446–482, 2021.

Jakiw Pidstrigach & SR, Affine-invariant ensemble transform methods for logistic regression, FoCM, 2022.

Overdamped Langevin dynamics

$$\mathrm{d}\Theta_{ au} = -
abla_{ heta} V(\Theta_{ au}) \,\mathrm{d} au + \sqrt{2} \,\mathrm{d}W_{ au} \,.$$

is not invariant under affine transformations

$$heta' = A heta + b;$$

that is

$$\mathrm{d}\Theta_{\tau}' = -\mathbf{A}\mathbf{A}^{\mathrm{T}}\nabla_{\theta'}V(\Theta_{\tau}')\,\mathrm{d}\tau + \sqrt{2}\mathbf{A}\,\mathrm{d}W_{\tau}\,.$$

Affine invariant sampling methods⁶

 ⁶Weare & Goodman, Comm. Appl. Math. Comput. Sci., 2010; Matthews et al, Stats. Comput., 2017
 ⁷SR, BIT, 2011
 ⁸Garbuno-Inigo et al, SIADS, 2020a
 ⁹Garbuno-Inigo et al, SIADS, 2020b

Affine invariant sampling methods⁶

Inspired by ensemble Kalman-Bucy filter:⁷

$$\mathrm{d}\Theta_{\tau} = -\sum_{\tau} \nabla_{\theta} G(\Theta_{\tau}) R^{-1} \left(G(\Theta_{\tau}) \mathrm{d}\tau + R^{1/2} \mathrm{d}W_{\tau} - y \mathrm{d}\tau \right)$$

 ⁶Weare & Goodman, Comm. Appl. Math. Comput. Sci., 2010; Matthews et al, Stats. Comput., 2017
 ⁷SR, BIT, 2011
 ⁸Garbuno-Inigo et al, SIADS, 2020a
 ⁹Garbuno-Inigo et al, SIADS, 2020b

Affine invariant sampling methods⁶

Inspired by ensemble Kalman-Bucy filter:7

$$\mathrm{d}\Theta_{\tau} = -\sum_{\tau} \nabla_{\theta} G(\Theta_{\tau}) R^{-1} \left(G(\Theta_{\tau}) \mathrm{d}\tau + R^{1/2} \mathrm{d}W_{\tau} - y \mathrm{d}\tau \right)$$

Ensemble Kalman sampler $(EKS)^8$ / affine invariant Langevin dynamics $(ALDI)^9$

$$\mathrm{d}\Theta_{\tau} = -\sum_{\tau} \nabla_{\theta} V(\Theta_{\tau}) \,\mathrm{d}\tau + \sqrt{2} \sum_{\tau}^{1/2} \,\mathrm{d}W_{\tau}.$$

 ⁶Weare & Goodman, Comm. Appl. Math. Comput. Sci., 2010; Matthews et al, Stats. Comput., 2017
 ⁷SR, BIT, 2011
 ⁸Garbuno-Inigo et al, SIADS, 2020a
 ⁹Garbuno-Inigo et al, SIADS, 2020b

Nonlinear (affine invariant) Fokker–Planck equation¹⁰

$$\partial_{\tau} \pi_{\tau} = -\nabla_{\theta} \cdot \left(\pi_{\tau} \Sigma_{\tau} \left\{ \nabla_{\theta} \log \pi_{\tau} - \nabla_{\theta} \log \pi_{a} \right\} \right) \\ = -\operatorname{grad}_{\pi}^{\operatorname{AI}} \operatorname{KL} \left(\pi_{\tau} || \pi_{a} \right)$$

 Σ_t the covariance matrix of $\Theta_{ au} \sim \pi_{ au}$.

Metric $g_{\pi}(\rho_1, \rho_2)$ on space of densities induced by **Mahalanobis** distance on \mathbb{R}^D :

$$\|a\|_{\Sigma_{ au}^{-1}}^2 := a^{\mathrm{T}} \Sigma_{ au} a$$

Bayesian inference, UP & SFB 1294

 $^{^{10}\}mbox{Otto},$ Comm. Part. Diff. Eqs., 2001, SR & Cotter, CUP, 2015; Garbuno-Inigo et al, SIADS, 2020a

Nonlinear (affine invariant) Fokker–Planck equation¹⁰

$$\begin{split} \partial_{\tau} \pi_{\tau} &= -\nabla_{\theta} \cdot \left(\pi_{\tau} \boldsymbol{\Sigma}_{\tau} \left\{ \nabla_{\theta} \log \pi_{\tau} - \nabla_{\theta} \log \pi_{a} \right\} \right) \\ &= - \mathsf{grad}_{\pi}^{\mathrm{AI}} \operatorname{\mathsf{KL}} \left(\pi_{\tau} || \pi_{a} \right) \end{split}$$

 Σ_t the covariance matrix of $\Theta_{ au} \sim \pi_{ au}$.

Metric $g_{\pi}(\rho_1, \rho_2)$ on space of densities induced by **Mahalanobis** distance on \mathbb{R}^D :

$$\|a\|_{\Sigma_{\tau}^{-1}}^2 := a^{\mathrm{T}} \Sigma_{ au} a$$

It holds that

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\mathrm{KL}(\pi_{\tau}||\pi_{\mathrm{a}}) = -\int_{\mathbb{R}^{N}} \pi_{\tau} \left\| \nabla_{\theta} \frac{\delta \mathrm{KL}(\pi_{\tau}||\pi_{\mathrm{a}})}{\delta \pi_{\tau}} \right\|_{\boldsymbol{\Sigma}_{\tau}^{-1}}^{2} \leq 0.$$

 $^{10}\mbox{Otto},$ Comm. Part. Diff. Eqs., 2001, SR & Cotter, CUP, 2015; Garbuno-Inigo et al, SIADS, 2020a

Bayesian inference, UP & SFB 1294

Implementation of affine invariant Langevin dynamics (ALDI):

$$\mathrm{d}\Theta_{\tau}^{(i)} = -\Sigma_{\tau}^{M} \nabla_{\theta} V(\Theta_{\tau}^{(i)}) \,\mathrm{d}\tau + \frac{D+1}{M} (\Theta_{\tau}^{(i)} - \bar{\theta}_{\tau}^{M}) + \sqrt{2} (\Sigma_{\tau}^{M})^{1/2} \,\mathrm{d}W_{\tau}^{(i)},$$

$$i = 1, \dots, M, \, \Theta_{\tau} \in \mathbb{R}^{D}.$$

Implementation of affine invariant Langevin dynamics (ALDI):

$$\mathrm{d}\Theta_{\tau}^{(i)} = -\Sigma_{\tau}^{M} \nabla_{\theta} V(\Theta_{\tau}^{(i)}) \,\mathrm{d}\tau + \frac{D+1}{M} (\Theta_{\tau}^{(i)} - \bar{\theta}_{\tau}^{M}) + \sqrt{2} (\Sigma_{\tau}^{M})^{1/2} \,\mathrm{d}W_{\tau}^{(i)} \,,$$

$$i=1,\ldots,M,\ \Theta_{\tau}\in\mathbb{R}^{D}.$$

Remarks.

- correction term in orange is needed for invariance of π_a (multiplicative noise),
- invariance and ergodicity holds provided $M \ge D + 1$,
- ALDI is affine invariant for any $M \ge 2$,
- derivative-free formulation .

Can we avoid the computation of gradients?

Idea: Introduce localised covariance matrices

$$\Sigma_{\tau}(\theta) := \frac{1}{C} \int (\theta' - \bar{\theta}_{\tau}) (\theta' - \bar{\theta}_{\tau})^{\mathrm{T}} e^{-\frac{1}{2\gamma} \|\theta' - \theta\|_{\Sigma_{\tau}}^{2}} \pi_{\tau}(\theta') \,\mathrm{d}\theta' \,, \qquad (3)$$

 $ar{ heta}_{ au}$ localised mean, $\gamma>$ 0, C> 0 a scaling constant.

Localised ALDI dynamics:

$$\mathrm{d}\Theta_{\tau} = -\Sigma_{\tau}(\Theta)\nabla_{\theta}V(\Theta_{\tau})\,\mathrm{d}\tau + \nabla_{\theta}\cdot\Sigma_{\tau}(\Theta_{\tau})\,\mathrm{d}\tau + \sqrt{2}\,\Sigma_{\tau}(\Theta_{\tau})^{1/2}\,\mathrm{d}W_{\tau}$$

Let $\overline{V}_{\tau}(\theta)$ denote the expectation of $V(\Theta')$ w.r.t. density defined in (3), that is,

$$ilde{\pi}_{ au}(heta'| heta) = rac{1}{C} e^{-rac{1}{2\gamma} \| heta'- heta\|_{\Sigma_{ au}}^2} \pi_{ au}(heta') \,.$$

Catch: $\tilde{\pi}_{\tau}(\theta'|\theta)$ is **close to Gaussian** with mean θ for $\gamma \ll 1$.

Allows for **derivative-free implementation** of ALDI/EnKBF with controllable errors as $\gamma \ll 1$ and $M \rightarrow \infty$:

$$\Sigma_ au
abla_ heta V pprox \Sigma_ au \overline{
abla_ heta V}_ au pprox \overline{(\Theta' - ar heta_ au)(V(\Theta') - ar V_ au)}_ au$$

Nonlinear forward operator

 $g(\theta_1, \theta_2) = (\theta_1 - \theta_2)^2$

Figure: Bimodal posterior (a) and ALDI results (b)-(d) for two-dimensional multimodal posterior distribution.

- Increasing interest in interacting particle systems for sampling, inference, and optimisation
- Fruitful exchange between methods based on ergodicyt & invariance and those based on coupling of measures
- Solid comparison is largely missing
- Affine invariance is highly desirable for applications in the natural sciences
- Gradient flow structures in the space of probability measures also appear as desirable; but in which metric and under which cost functional?