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Part I

Optimal Reconstruction Benchmarks
for State Estimation

Ref: [Mul21] Inverse Problems: A Deterministic Approach using

Physics-Based Reduced Models. O. Mula (Lecture Notes, submitted, 2021)
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What is an Inverse Problem?

In Inverse Problems, we aim to �nd the cause of an observed e�ect.
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Mathematical setting

Ambient space V :

Hilbert space over a domain Ω ⊂ Rd .

Potentially very high or in�nite dimension.

Parametrized PDE to model physical system:

B(y)u = f (y)

where
y = (y1, . . . , yp) ∈ Y ⊂ Rp

is a vector of parameters ranging in some domain Y ⊂ Rp.

Solution manifold:

M := {u(y) : y ∈ Y} ⊂ V

is the set of all admissible solutions.
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Mathematical setting

Forward problem/Model Order Reduction:

Given (many) y ∈ Y, compute u(y).

Inverse problem: For an unknown u = u(y) with unknown y ∈ Y, we
observe a vector of linear measurements

z = (z1, . . . , zm) ∈ Rm

where
zi = `i (u) = 〈ωi , u〉 , i = 1, . . . ,m.

The `i model the sensor response:

`i ∈ V ′ are indep. linear functionals. Riesz representers: ωi ∈ V .

Examples:

`i (u) = δxi (u) = u(xi )

`i (u) =
∫

Ω e−
||x−xi ||2

σ2 u(x)dx
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Mathematical setting

In inverse problems, we want to invert the cascade of forward
mappings:

y ∈ Y ⊂ Rp 7→ u(y) ∈ M 7→ z = `(u) ∈ Rm

Types of inverse problems:

State Estimation:
z 7→ u∗(z) ≈ u

Parameter Estimation:

z 7→ y∗(z) ≈ y

when z = `(u(y)).

In time-dependent problems: �nd initial condition, forecast of u...

Severely ill-posed problems when p > m.
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State Estimation

Running Assumptions: No noise, no model error.

Goal: From the unknown u ∈ M, we are given

`i (u) = 〈ωi , u〉 , i = 1, . . . ,m,

De�ning the observation space

W := span{ω1, . . . ,ωm} ⊂ V

we have the equivalence

`i (u), i = 1, . . . ,m ⇔ ω = PW u.

Our task is to �nd a reconstruction algorithm

A : W → V

such that A(PW u) approximates the state u.
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Optimal reconstruction algorithms

Quality of A : W → V :

E (A,M) = max
u∈M

||u − A(PW u)||

Optimal performance among all algorithms:

E ∗(M) = min
A:W→V

E (A,M).

There is a simple mathematical description of an optimal map A∗.
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An optimal algorithm A∗. Not feasible in practice.

Practical issue: A∗wc is not easily computable sinceM may have a
complicated geometry which is in general not given explicitly.

Olga MULA (Dauphine & Inria) Optimal schemes for inverse problems 11/ 29



Part II

An implementable piecewise a�ne algorithm
that meets the benchmark

. Linear/A�ne algorithms

Nonlinear piecewise a�ne algorithms

Ref: [CDD+20] Optimal A�ne reduced model algorithms for data-based state

estimation (SINUM, 2020)
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A�ne reconstruction algorithms

De�nition:
Let V n = ū + Vn be an a�ne subspace with 1 ≤ n ≤ m. The mapping

A : W → V

ω 7→ A(ω) := argmin
v∈ω+W⊥

dist(v ,V n)

is an a�ne algorithm in the sense that

A(·− PW ū) ∈ L(W ,V ).

Performance: E (A,M) ≤ β−1n,m εn

εn := max
u∈M

dist(u,V n), βn,m := inf
v∈Vn

‖PWm
v‖

‖v‖ = cos(θVn,Wm
) ∈ (0, 1]
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Choice of V n and W

Choice of V n:

Optimal V n (see [CDD+20])
 �Optimize over βn,mεn�.

Reduced Order Models (PBDW, GEIM, see [MPPY15, MM13])

 Conceived for forward problem
 Build V n with good εn
 εn decays fast with n in elliptic/parabolic problems.

�Multi-purpose� spaces such as Fourier expansions
(Compressed Sensing literature, see [AHP13])

Sensor placement:
Fix V n, build W from a dictionary D, see [BCMN18].
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Limitations of A�ne Algorithms

We have that

E ∗(M) = min
A:W→V

A any mapping

E (A,M) ≤ dm+1(M) ≤ min
A:W→V
A a�ne

E (A,M),

where
dm+1(M) := min

Z⊆V
dim(Z )≤m+1

max
u∈M

‖u − PZu‖

is the Kolmogorov m+ 1-width.

Depending onM and W , we may have

E ∗(M)�dm+1(M).

This problem typically arises in elliptic PDEs with loss of coercivity and in
hyperbolic PDEs.
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An implementable piecewise a�ne algorithm
that meets the benchmark

Linear/A�ne algorithms

. Piecewise a�ne algorithms

Ref: [CDMN22] Nonlinear reduced models for state and parameter estimation

(SIAM JUQ, 2022)
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Piecewise-a�ne algorithms

Consider a partition of the parameter domain

Y = Y1 ∪ · · · ∪ YK  M =M1 ∪ · · · ∪MK .

For eachMk , we may �nd an appropriate V k , and de�ne Ak .

From the given data ω = PW u, we need to select between the
reconstructions

uk = Ak (ω), k = 1, . . . ,K .
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Model selection

We would like to select the reconstruction that is closest toM

k∗ = k(ω) = argmink=1,...,Kdist(Ak (ω),M),

but
dist(Ak (ω),M) := min

y∈Y
‖u(y)− Ak (ω)‖.

is not easily computable.

In uniformly coercive problems, we have that the residual

R(v , y) := ‖B(y)v − f (y)‖2V ′ , ∀(v , y) ∈ V × Y

is uniformly equivalent to the ambient norm

r‖v − u(y)‖V ≤ R(v , y) ≤ R‖v − u(y)‖V , ∀v ∈ V .

We can thus equivalently compute for all k = 1, . . . ,K

min
y∈Y
R(Ak (ω), y) −→

mink=1,...,K
k̂(ω), ŷ(ω)

This is a convex problem in a�nely parametrized PDEs.
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Model selection

Theorem 1 (Cohen, Dahmen, Mula, Nichols, 2021)

For a given target tolerance σ > 0, we can �nd a partition ofM s.t.

E ∗(M) ≤ E (Ak̂ ,M) ≤ E ∗(Mσ)

where k̂ comes from our model selection on the residual.

We can make σ→ 0 by increasing K (with dyadic splittings).

σ can also account for noise and model error in the analysis.
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Model selection

Theorem 1 (Cohen, Dahmen, Mula, Nichols, 2021)

For a given target tolerance σ > 0, we can �nd a partition ofM s.t.

E ∗(M) ≤ E (Ak̂ ,M) ≤ E ∗(Mσ)

where k̂ comes from our model selection on the residual.

We can make σ→ 0 by increasing K (with dyadic splittings).

σ can also account for noise and model error in the analysis.

Merits and Limitations:

X General algorithm.

X Good e�ciency if few partitions (elliptic, parabolic pbs with possibly
weak coercivity)

7 In transport-dominated problems, for a given target σ > 0 too many
partitions may be required.
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Part III

Numerical illustration on an academic example

Ref: [CDMN22] Nonlinear reduced models for state and parameter estimation

(SIAM JUQ, 2022)
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Numerical example

Elliptic PDE with piecewise constant di�usion �eld

− div(a(x , y)∇u(x , y)) = 1 on Ω = [0, 1]2, (well-posed in V = H1

0 (Ω))

a = a(x , y) = 1+ ∑
j

cjyjχDj
(x), y = (yj ) ∈ [−1, 1]16, `i (u) =

∫
Ω
e−

||x−xi ||2

σ2 u(x)dx
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Numerical example
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Part IV

Application to biomedical problems

Ref: [GLM21b] State Estimation with Shape Variability. Application to

biomedical problems. (SISC, 2022)
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Motivation: State Estimation on Carotid Arteries

Problem 1: Given a carotid artery Ω, reconstruct quickly the 3D
velocity and pressure �elds from Doppler US velocity measurements.

Strategy: (see [GGLM21, GLM21a])

Parametric Navier Stokes equations → M ≈ Vn.

A�ne Algorithm for State estimation → Vn, Wm.
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Motivation: State Estimation on Carotid Arteries

Problem 2: The morphology of the carotid varies for each patient.

Goal: Given a new target carotid Ω, provide a fast reconstruction.

Roadmap:

Direct computation of VΩ
n would take too long.

Use pre-computations on a database of carotids.
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Conclusions

Theoretical foundations for state estimation with reduced models.

Some results on parameter estimation.

Alternative to bayesian inversion using more deterministic notions of
accuracy quanti�cation.

Extension to problems with shape variability.
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