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Multi-fidelity Wavelet Gaussian Processe: Illustration
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Context and Goals
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xt and Goals

Time dependent outputs, definition and use

(
@ X

ZH,L(QJ, t)

t

m The quantity of interest Zg, . (x,t) : X x [0,T7] - R is known at Ny, points of the
designs of experiments at Dy 1 = {z™ ... VH.L)} with N > Ny

B Zu,(z,t.) is known for t,, on a regular grid with w =1,---, N and N; > 1but only for
some z € R%.
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Wavelet Gaussian Processes Multi-fidelity
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Gaussian process for time-series outputs - Simple fidelity

The emulator of the code is a Gaussian Process (GP) such that :
Z(x,ty) ~ GP (u(z,tu), k(x,tu)).
To build the GP, different methods can be used :

m For specific form (tensorized, sparse, ... ) of the covariance function the system is well
conditioned, and it is possible to optimize the hyperparameters, see Perrin, G. (2020).

m If the dimension of the outputs can be reduced then independent Gaussian processes
can be used to estimate the function on the subspace.

The dimension reduction methods can be : PCA, ICA, Auto-encoders, ...

®m In our method the GP's kernel is supposed to be parametric. The wavelet transform is
used to simplify the conditioning of the GP. The kernel function is tensorized in ¢, and

' k(2 1) = ke (ta) ko (2).
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Wavelet Gaussian Processes

Wavelet Gaussian process (WGP)

The Gaussian process is modelled by :

Ni-1

Z(w,tu) = A(x,0)p(tu) + Z; Az, i)i(tu)

Scale function Wavelet decomposition

@ The outputs are decomposed on a wavelet basis.

= A is the GP in the wavelet domain with mean and covariance with an analytical expression
obtained form the kernel of Z.

= Realizations of A are observed from the data.

@ The number of points must be reduced for the Gaussian conditioning.
= \We are not able to work on the N;N; x NN covariance matrix of the system.

= Points (z,%) in the experimental are points that maximize :
(0(A(w,1)) - a(=,1))? + o (A(z,1))?.

© GP regression in wavelet domain.

© Return to the time domain, Z(x,t,) is expressed as a function of A.
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Wavelet Gaussian Processes Multi-fidelity Wavelet Gaussian Processe: lllustration
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Covariance in the time domain and the wavelet domain

Covariance of Z(z,t) (time domain) Covariance in A (wavelet domain)
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The covariance is more concentrated in the wavelet case than in time case.

This reduces the number of points with minimal loss of information.
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sian Processes

WGP conditioning

Z(x,t) Wavelet transform A(]J,i) Truncation
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Nz x Nt ~ 2000 points in the learning set N = 15, o
N; =128.
For each method only 100 points are used. —
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Wavelet Gaussian Processes
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WGP summary

m The covariance is supposed to be tensorized. The analytical formulation of the
covariance is :

Cov(A(,4,K), AG 7 K)) = [ @ D20 16T i) Fe)ae,

with F'(€) the Fourier transform of the covariance kernel and v)(€) the Fourier
transform of the wavelet function. i = (j,k) j is the scale coefficient and k the position.

F(€) is obtained thanks to the tensorized kernel of Z.
= Analytical expressions for Haar wavelet function and Matérn kernel are available.

m Sparse representation of the covariance in the Wavelet domain allows to have an
efficient conditioning of the WGP.

m Same properties as for GP :

= GP based optimization
= Active learning
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Multi-fidelity Wavelet Gaussian Processes llu
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Multi-fidelity AR(1) Gaussian process regression - scalar output

B The quantities of interest : az (z) € R, respectively ar(z) with = € R%
m Hypothesis : The emulator is a GP (A (z), Ar(z)) with realizaitions (an(z),ar(z)).

m Autoregressive CoKriging model :
A (x) = p(z)AL(z) +6(x),

where §(x) GP independent of Az (z) and p(z) adjustment linear form.

m Prediction : when the hyper-parameters of the model are known,
[An(2)ldata] ~ GP(m.a, (2),0%,, (2)),

the quantities ma, (z) and O‘E;H (x) have analytical expressions.

m These expressions come from Le Gratiet, L., & Garnier, J. (2014).
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Multi-fidelity Wavelet Gaussian Processes
0e00

lllustration in 1D of Multi-fidelity

The low-fidelity code (in red) zr(z) = 0.5(6x — 2)* sin(12z — 4) + 10(z - 0.5) - 5.
The high-fidelity code (in black) zg (x) = 221 (x) — 20z + 20.
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Multi-fidelity Wavelet Gaussian Processes
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Multi-fidelity Wavelet Gaussian process - time series output

Let assume that (Zp, Z1) is a Gaussian process of the form :
Ny-1
Zp(w,t) = AL(2,0)¢(t) + 3 Ar(w,i)¢i(t),
i=1
Ny-1
Zu(,t) = An(2,0)0(t) + 3 An(z,i)9i(t),
=1

then the AR(1) hypothesis is done on (Zu, Z1) :
Zu(x,ty) = p(2) Zo(z,ty) + 6(z,ty).
The hypothesis is also true for (Am, Ar) :

Ap(z,1) = p(x)AL(z,4) +0(x,17).

= We assume that the covariance of (Zy, Z1) is of a parametric form. Then the
covariance of (A, Ar) is of a parametric form.
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Multi-fidelity Wavelet Gaussian Processes
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Multi-fidelity WGP regression summary

m The WGP can effortlessly extend to multi-fidelity framework.

© Wavelet transform for high- and low-fidelity data.

@ Point selection for high-and low-fidelity surrogate model.
© Regression for low-fidelity using WGP.

@ Regression of high-fidelity using the recursive form

@ Inverse Wavelet transform
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Illustration
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An example : The double pendulum

We use the outputs of a calculation code that models the system with two levels of fidelity :

k M
4 .
Pay pay inputs

k spring stiffness
M mobile mass
l pendulum length
y mobile position
0 pendulum angle
m pendulum mass

output
z pendulum position

The difference between high and low fidelity is that the for low fidelity we assume that the
angle 0 is small.
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Illustration
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Examples of Outputs

M [3;8]
2 k [0.1;2.1]
. 0o | [5:3]
=7 bo | [0:5
: yo | [0;0.2]
] ° Yo 0
@ | l 2
' m 0.5
a4 g 9.81
o TABLE — Range of variation of
T the different system parameters.

For Ny =10 (red), N =100 (blue) and N; = 101 (for wavelet transform N; = 64)
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Multi-fidelity Wavelet Gaussi e Illustration
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The CVB method

m The emulator of the low- and high-fidelity code output is :

ZL(QZ,tu) = ]ZV:BLL(J:)FZ'(tu) + Zi(d?,tu)

i=1

coefficients  basis
N ———"

ZH(x,tu) = ZBLII(i) Fz(tU) + ZIJ;((x7tu)

i=1
—
dimension reduction orthogonal part

(B; u(z),B;i,.(x)) is a Gaussian process.

m The orthogonal part Z (x,t,) is a Gaussian process with tensorized covariance.

® The basis I';(¢,) is obtained by SVD on low-fidelity data.

m We get mean and variance E [Zy (z,t.)|Observations] and V[Zy (x,t.,)|Observations].

m N < Ny is chosen by cross validation.

This methods is proposed in Kerleguer, B. (2021).
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Illustration
[e]e]e] )

The result in Q? :

1.00] -mm-mmmmmmm oo

0.95

0.85

0.801

m NN is a Neural Network method adapted to this example.
m The results are better with CVB because the function is almost stationary.
m WGP is more expensive than NN and CVB method.
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Conclusion

Conclusion & Perspectives

m Conclusion :

= Prediction and uncertainty quantification for the model.
= The computation cost remains reasonable.

= Same properties as for GP regression.
m Perspectives :

= Fast implementation of the Covariance for different kernels.
= Use Deep GP for multi-fidelity surrogate.
= Other approaches selecting conditioning points.
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Multi-fidelity Wavelet Gaussi e ) Conclusion References
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