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Introduction

Bayesian inverse problems: target the posterior distribution p(x|D) of
the unknown parameters x ∈ RD given the observed data D ∈ Rm

Standard setting: Gaussian likelihood D|x ∼ Nm(f(x),Σobs), where
f(x) : RD → Rm is known as the simulator

The simulator is often the deterministic solution to a PDE modelling
an underlying physical process [Stuart, 2010]

Bayesian inverse problems are employed in a variety of applications,
such as climate modelling, medical imaging and material sciences
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Randomized Maximum Likelihood

Randomized Maximum Likelihood (RML) was introduced by [Oliver et al.,
1996], as an approximate posterior sampling methodology

Algorithm Randomized Maximum Likelihood (RML)

nRML : number of samples required
for n ∈ [nRML] do
1. Sample Dn ∼ Nm(D,Σobs) from the Gaussian likelihood
2. Sample µn ∼ ND(µ,Σ) from the Gaussian prior
3. Construct log p(D|x)p(x) w.r.t. the randomizations (Dn, µn)

On(x) := logNm(f(x)|Dn,Σobs) + logND(x|µn,Σ)

4. Obtain x⋆n as the maximizer x⋆n = argmaxxOn(x).
end for
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Randomized Maximum Likelihood

The resulting solutions {x⋆n}
nRML
n=1 are regarded as approximate

samples from the posterior distribution p(x|D); the samples are only
exact draws from the posterior when the simulator f(x) is linear

Additional care needs to be taken in more challenging scenarios, such
as multi-modal posteriors with highly nonlinear simulators [Bardsley
et al., 2014,Oliver, 2015,Ba et al., 2021]

Nonetheless, good practical performance has been observed for
nonlinear neural network parameterized simulators [Tang et al., 2020]
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Randomized Maximum Likelihood and Active Subspaces

In this work, we address solving the RML optimization problems
efficiently in the case of a high-dimensional input space RD

We focus on the specific scenario where the log-likelihood

log p(D|x) ∝ L(x) := −||D − f(x)||2Σobs

has a low-dimensional active subspace [Constantine et al., 2015]

In other words, we assume L(x) ≈ g(ATx), where g : Rd → R with
d ≪ D, and A ∈ RD×d is a semi-orthogonal matrix (ATA = Id)
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Active Subspaces

We consider the expected outer product of the gradient

C :=

∫
∇L(x)∇L(x)Tdp(x)

In practice, we might only have access to the Monte-Carlo sum

Ĉ :=
1

n

n∑
i=1

∇L(xi)∇L(xi)
T , xi ∼ p(x)

The d dominant eigenvectors of Ĉ form the active subspace A,
usually when the dth eigenvalue is ≥ 10× larger than the (d+ 1)th

The prior distribution in the integral can be replaced by an
approximation of the posterior distribution [Zahm et al., 2018]
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List of assumptions

Computational constraints mean that we are limited to at most N
simulator evaluations (for complex simulators, N may be small)

We do not have access to gradients of the simulator

Although we assume an active subspace A exists, we do not have
access to A, and moreover, we do not have sufficient budget to
estimate it from {xi, L(xi)}Ni=1

Even though the log-likelihood has a low-dimensional active
subspace, the prior might not have such a structure
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Bayesian Optimization

If we ignore the prior and the multi-objective nature of our problem
for now, the task of maximizing an objective O(x) ≈ g(ATx) (in this
case, the log-likelihood) under the assumptions mentioned above is
common in high-dimensional Bayesian Optimization (HD-BO)

Bayesian Optimization (BO, i.e. finding argmaxxO(x) using a
Gaussian process approximation gGP(x) ≈ O(x)) is based on a
standard exploration-exploitation principle

Namely, an acquisition function based on gGP(x) is used such that in
the exploration phase, the target function O(x) is explored globally,
whereas in the exploitation phase, points x̃ that are likely to satisfy
x̃ = argmaxxO(x) are sampled until the maximum is found
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High-Dimensional Bayesian Optimization (HD-BO)

GPs are known to deal well with small training budgets, but may
struggle with high input dimensionality D [Liu and Guillas, 2016]

As a result, the HD-BO literature mostly deals with the prevalent
case where the approximation gGP(x) ≈ O(x) is unsatisfactory

In our setting where an active subspace exists but is unknown, the
most common solution is the use of random embeddings, R, instead
of the true low-dimensional embedding A [Wang et al., 2013]
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High-Dimensional Bayesian Optimization (HD-BO)

Algorithm Generic HD-BO with random embeddings

M : number of evaluations of O(·) possible given the computational
budget;
de : chosen dimensionality of the embedding R;
R ∈ RD×de : random embedding;
m0 : initial training points {yi, O(Ryi)}m0

i=1, with yi ∈ Rde

for m ∈ {m0 + 1, . . . ,M} do
1. Construct a GP approximation O(Ry) ∼ GP using the available
objective function evaluations {yi, O(Ryi)}m−1

i=1

2. Select ym = argmaxy am(y) as the maximizer of a BO acquisition
function for O(Ry) ∼ GP
3. Update the training data to {yi, O(Ryi)}mi=1.

end for
Obtain x⋆ = Rym⋆ as the maximizer

m⋆ = argmax
m

O(Rym), m ≤ M.
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High-Dimensional Bayesian Optimization (HD-BO)

The random embedding, R, transforms the original high-dimensional
BO problem O(x) ∼ GP for x ∈ RD into a low-dimensional BO
problem O(Ry) ∼ GP for y ∈ Rde

In other words, instead of trying to maximize O(x), we try to
maximize O(Ry), which is the objective function on the subspace R

In practice, we can use multiple random projections R1, . . . , RK

giving maximizers x1⋆, . . . , x
K
⋆ , and select x⋆ := argmaxxk

⋆
O(xk⋆)
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Gaussian Processes and posterior sampling

Although there is an extensive literature for HD-BO with random
embeddings, there is no methodology designed for posterior sampling

The use of GPs for posterior sampling in low-dimensional
experiments can be found in the active learning literature, where the
aim is to generate training points from high-posterior density regions

Regarding high-dimensional experiments, GPs have been mostly used
in cases where the prior distribution had a low-dimensional structure
which was amenable to dimension reduction
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RML via HD-BO (uniform prior)

Firstly, we consider the simpler setting of a uniform prior,
x ∼ U [ai, bi]

D
i=1, where [ai, bi]

D
i=1 := [a1, b1]× · · · × [aD, bD]

In this case, the posterior is proportional to the likelihood, and using
our active subspace assumption the RML objectives become

On(x) = Ln(x) := logNm(f(x)|Dn,Σobs) ≈ gn(A
T
nx)

Since all the objective functions On(x) have similar structure and are
based on the same underlying simulator f(x), we expect that the BO
exploration stage can be performed at once for all objectives
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RML via HD-BO (uniform prior)

For example, we could run HD-BO for O1(x) (T1 iterations say), and
then reuse the training data {(y1t , f(Ry1t ))} to warm-start/speed-up
convergence for O2(x) (T2 ≪ T1)

Whilst this is an attractive strategy, it poses the difficulty of having
to choose a stopping time Tn for every objective

As a result, we choose the simpler strategy of performing a cyclic
pass through all the objective functions On(x)
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RML via HD-BO (uniform prior)

We write n := n0 for the initial points, M := nRML for the number
of RML objectives and Om(y) := Om(Ry) for m ∈ [M ]

1 . . . n n+ 1



O1(y) y1, O1(y1)
... yn, O1(yn) yn+1

O2(y) y1, O2(y1)
... yn, O2(yn)

...
...

...
...

OM (y) y1, OM (y1)
... yn, OM (yn)

→

1 . . . n n+ 1



y1, O1(y1)
... yn, O1(yn) yn+1, O1(yn+1)

y1, O2(y1)
... yn, O2(yn) yn+1, O2(yn+1)

...
...

...
...

y1, OM (y1)
... yn, OM (yn) yn+1, OM (yn+1)

1 . . . n+ 1 n+ 2



y1, O1(y1)
... yn+1, O1(yn+1)

y1, O2(y1)
... yn+1, O2(yn+1) yn+2

...
...

...

y1, OM (y1)
... yn+1, OM (yn+1)

→

1 . . . n+ 1 n+ 2



y1, O1(y1)
... yn+1, O1(yn+1) yn+2, O1(yn+2)

y1, O2(y1)
... yn+1, O2(yn+1) yn+2, O2(yn+2)

...
...

...
...

y1, OM (y1)
... yn+1, OM (yn+1) yn+2, OM (yn+2)
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RML via HD-BO (uniform prior)

Algorithm HD-BO-RML with uniform priors

N : max possible number of evaluations of f(·);
de : choice of embedding dimensionality;
R1, . . . , RK ∈ RD×de : collection of random embeddings;
n0 ×K initial points: {yki , f(Rky

k
i )}

n0
i=1, with yki ∈ Rde , k ∈ [K];

for k ∈ {1, . . . ,K} do
for n ∈ {n0 + 1, . . . , ⌊N/K⌋} do

1. Set n′ := n mod nRML

2. Construct a GP approximation to On′ (Rky) using simulations {yki , f(Rky
k
i )}

n−1
i=1

3. Select ykn = argmaxy akn(y) as the maximizer of a BO acquisition function using the
GP approximation
4. Perform simulation f(Rky

k
n) and update the shared simulation ensemble to

{yki , f(Rky
k
i )}ni=1.

end for
end for
for n ∈ {1, . . . , nRML} do

1. Obtain x⋆
n = Rk⋆y

k⋆
m⋆ as the maximizer

k⋆,m⋆ = argmax
k,m

On(Rky
k
m), k ∈ [K],m ≤ ⌊N/K⌋

end for
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RML via HD-BO (Gaussian prior)

Using again the active subspace assumption:

On(x) = Ln(x) + log pn(x) ≈ gn(A
T
nx) + logND(x|µn,Σ),

where Ln(x) := logNm(f(x)|Dn,Σobs)

Due to the potential lack of low-dimensional structure in the prior,
running HD-BO by modelling On(Ry) ∼ GP can be unsatisfactory,
and hence we cannot re-use the algorithm from the uniform prior case

Instead, while we keep performing HD-BO with respect to the
log-likelihood, we try to increase the prior value for the selected
points of potentially high-likelihood x0 := Rky

k
n
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RML via HD-BO (Gaussian prior)

Algorithm HD-BO-RML with Gaussian priors

N : max possible number of evaluations of f(·);
de : choice of embedding dimensionality;
R1, . . . , RK ∈ RD×de : collection of random embeddings;
n0 ×K initial points: {yki , f(Rky

k
i )}

n0
i=1, with yki ∈ Rde , k ∈ [K];

for k ∈ {1, . . . ,K} do
for n ∈ {n0 + 1, . . . , ⌊N/2K⌋} do

1. Let n′ := n mod nRML

2. Construct a GP approximation to Ln′ (Rky) using simulations {yki , f(Rky
k
i )}

n−1
i=1

3. Select ykn = argmaxy akn(y) as the maximizer of a BO acquisition function using the
GP approximation
4. Perform f(Rky

k
n) and update the shared simulation ensemble to {yki , f(Rky

k
i )}ni=1

5. Perform local optimization with respect to the prior and select zkn =
argmaxx∈B pn′ (x), where B ∈ RD is a box centered at x0 = Rky

k
n.

end for
end for
for n ∈ {1, . . . , nRML} do

1. Obtain x⋆
n = zk⋆

m⋆ as the maximizer

k⋆,m⋆ = argmax
k,m

On(z
k
m), k ∈ [K],m ≤ ⌊N/2K⌋

end for
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Experiments

Elliptic-PDE simulator f : R100 → R7 with standard Gaussian prior
x ∼ N100(0, I) [Constantine et al., 2015]

This setup is common in many Bayesian inverse problems, including
when non-Gaussian features T (x) (e.g. channelized permeability
fields in geology) generate D = f(T (x)) + ϵ [Iglesias et al., 2015]

Ebola: f : R8 → R, an 8-parameter dynamical system model for the
geographic spread of Ebola in Liberia [Diaz et al., 2016]

MHD: f : R5 → R, a 5-parameter magnetohydrodynamics power
generation model [Glaws et al., 2016]

HIV long-term model: f : R27 → R [Loudon and Pankavich, 2016]
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Competing methods

BOBYQA (trust-region method) [Powell, 2007]

CMA-ES (evolution strategy method) [Hansen et al., 2019]

Random design

We are interested in the method that finds points with the highest
mean return, i.e., largest

1

nRML

nRML∑
n=1

On(x
⋆
n),

where x⋆n is the approximate maximizer of On(x) as selected by the
different methods considered
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Experimental setup

We consider 5 trials; each experiment has a fixed set of
measurements D and thus a fixed set of RML objectives

Each trial has a budget of at most N = 1000 simulations in order to
find nRML = 20 samples

BOBYQA and CMA-ES cannot share data between different
objectives Oi(x) and Oj(x), unlike HD-BO-RML which shares data
through the common simulator via the GP training sets

We employ BOBYQA and CMA-ES independently for each objective
On(x) for n ∈ [nRML = 20], using at most 50 simulator evaluations
per objective to stay within budget
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Results

(a) PDE (b) Ebola

(c) MHD (d) HIV
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Visualization of samples

(a) PDE (b) RML oracle (c) HDBO-RML

(d) Ebola (e) RML oracle (f) HDBO-RML

Figure: Posterior landscape in the active subspace (left), oracle RML samples
with infinite budget (middle) and RML samples obtained by our procedure
(right). The RML samples are shown in orange, with prior samples given in blue.
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Visualization of samples

(a) MHD (b) RML oracle (c) HDBO-RML

(d) HIV posterior (e) RML oracle (f) HDBO-RML

Figure: Posterior landscape in the active subspace (left), oracle RML samples
with infinite budget (middle) and RML samples obtained by our procedure
(right). The RML samples are shown in orange, with prior samples given in blue.
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Conclusions and future work

We have introduced an RML approach based on HD-BO that
outperforms competing gradient-free optimization methods when
there are tight computational budget constraints

To demonstrate the potential of our procedure, we presented a
vanilla version using default choices of embeddings, GP
approximations, and acquisition function

For future work, it would be interesting to investigate multi-output
GPs for our procedure and for multi-objective HD-BO in general,
complementing the findings of [Dai et al., 2020] regarding
low-dimensional experiments
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