When Global Sensitivity Analysis provides insight into Group Fairness

Clément Bénesse

7 June 2022

IMT - ANITI

Quote from the Artificial Intelligence Act (21/04/2021)

"The measures referred to in paragraph 3 shall enable the individuals to whom human oversight is assigned to do the following, as appropriate to the circumstances:

- 1. fully understand the capacities and limitations of the high-risk AI system [...] ;
- remain aware of the possible tendency of automatically relying or over-relying on the output produced by a high-risk AI system ('automation bias')[...];
- 3. be able to correctly interpret the high-risk AI system's output, taking into account in particular the characteristics of the system and the interpretation tools and methods available;
- be able to decide, in any particular situation, not to use the high-risk AI system or otherwise disregard, override or reverse the output of the high-risk AI system;
- be able to intervene on the operation of the high-risk AI system or interrupt the system through a "stop" button or a similar procedure."

A song of GSA & Fairness

- GSA = Global Sensitivity Analysis
- Quantification of the influence of a variable in a set of input variables X := (X₁,..., X_p) on the outcome of a black-box algorithm f.
- In fact, we want to quantify
 d(ℙ(X_i, f(**x**)), ℙX_iℙ_f(**x**)), with *d* a
 distance for distributions.

What are Sobol' indices?

Sobol' indices keywords: Hoeffding decomposition, functional ANOVA. Assume $\mathbb{P}_{\mathbf{X}} = \prod_{i=1}^{p} \mathbb{P}_{X_i}$ and let $f \in \mathbb{L}^2(\mathbb{P}_{\mathbf{X}}), \mathbb{E}[f] = 0$ (f centered),

$$f(\mathbf{X}) = \sum_{A \in \mathcal{P}(d)} f_A(\mathbf{X}_A),$$

where $\mathbf{X}_A := \{X_i, i \in A\}$ and the $f_A(\mathbf{X}_A) := \sum (-1)^{|A| - |B|} \mathbb{E}[f(\mathbf{X}) | \mathbf{X}_B]$ are orthogonal.

What are Sobol' indices?

Sobol' indices keywords: Hoeffding decomposition, functional ANOVA. Assume $\mathbb{P}_{\mathbf{X}} = \prod_{i=1}^{p} \mathbb{P}_{X_i}$ and let $f \in \mathbb{L}^2(\mathbb{P}_{\mathbf{X}}), \mathbb{E}[f] = 0$ (f centered), $f(\mathbf{X}) = \sum_{A \in \mathcal{P}(d)} f_A(\mathbf{X}_A),$

where $\mathbf{X}_A := \{X_i, i \in A\}$ and the $f_A(\mathbf{X}_A) := \sum (-1)^{|A| - |B|} \mathbb{E}[f(\mathbf{X}) | \mathbf{X}_B]$ are orthogonal.

Then we have:

$$\operatorname{Var} f(\mathbf{X}) = \sum_{A \in \mathcal{P}(d)} \operatorname{Var} f_A(\mathbf{X}_A).$$

What are Sobol' indices?

Sobol' indices keywords: Hoeffding decomposition, functional ANOVA. Assume $\mathbb{P}_{\mathbf{X}} = \prod_{i=1}^{p} \mathbb{P}_{X_i}$ and let $f \in \mathbb{L}^2(\mathbb{P}_{\mathbf{X}}), \mathbb{E}[f] = 0$ (f centered), $f(\mathbf{X}) = \sum_{A \in \mathcal{P}(d)} f_A(\mathbf{X}_A),$

where $\mathbf{X}_A := \{X_i, i \in A\}$ and the $f_A(\mathbf{X}_A) := \sum (-1)^{|A| - |B|} \mathbb{E}[f(\mathbf{X}) | \mathbf{X}_B]$ are orthogonal.

Then we have:

$$\operatorname{Var} f(\mathbf{X}) = \sum_{A \in \mathcal{P}(d)} \operatorname{Var} f_A(\mathbf{X}_A).$$

After renormalization:

Sobol' indices

$$1 = \sum_{A \in P(d)} \quad \widetilde{S_{\mathbf{X}_A}(f)} \quad .$$

In a nutshell: Sobol' indices = $\cos^2(\alpha)$.

Two definitions (we denote by $\sim A := A^c$):

$$S_{X_i}(f) := \frac{\operatorname{Var} \mathbb{E}[f(\mathbf{X})|X_i]}{\operatorname{Var} f(\mathbf{X})}, \quad (1)$$

$$ST_{X_i}(f) := \sum_{s \ni X_i} S_{\mathbf{X}_s}(f) = 1 - S_{\mathbf{X}_{\sim i}(f)}.$$
(2)

Main **assumption** of the Hoeffding decomposition: **independent inputs** (not realistic).

Hence come the extended Sobol' indices [2] to differentiate:

- joint effects (e.g. $f(X_1, X_2) = X_1 \times X_2$) and
- intrinsic effect of an input variable with the others (e.g. X₁ = g(X₂, ε) with ε some source of randomness).

Notation: $S_{X_i}(f)$ is for independent inputs, otherwise we use $Sob_{X_i}(f)$.

Sobol' indices					
	"Entanglement" between variables	Joined contributions			
Sob _k	\checkmark	×			
SobT _k	\checkmark	\checkmark			
Sob ^{ind}	×	×			
SobT ^{ind}	×	\checkmark			

Table 1: Sobol' indices: what is taken into account and what is not.

We proved a **Central Limit Theorem** for Monte Carlo estimates of these quantities.

Welcome to the Fairness World

Group Fairness framework: we add a **sensitive feature** *S* (gender, ethnicity, etc...).

We want S **NOT** to be influent on the outcome $f(\mathbf{X}, S)$.

Note: Fairness through unawereness, i.e. "not looking at S" does not work.

Note bis: S multidimensional: notion of "intersectionality".

	Fairness definition	Binary formula
ſ	Statistical Parity	$\mathbb{P}(f(X,S)=1 S=0)=\mathbb{P}(f(X,S)=1 S=1).$
	Avoiding Disparate Treatment	$\mathbb{P}(f(\mathbf{X}, S) = 1 \mathbf{X} = x, S = 0) = \mathbb{P}(f(\mathbf{X}, S) = 1 \mathbf{X} = x, S = 1).$
	Equality of odds	$\mathbb{P}(f(\mathbf{X}, S) = 1 Y = i, S = 0) = \mathbb{P}(f(\mathbf{X}, S) = 1 Y = i, S = 1), i = 0, 1.$
	Avoiding Disparate Mistreatment	$\mathbb{P}(f(\mathbf{X},S) eq Y S=1)=\mathbb{P}(f(\mathbf{X},S) eq Y S=0).$

Table 2: Common fairness definitions and associated GSA measures

Theorem (B. & al., 2103.04613) *GSA measures define Fairness measures.*

Fairness definition	GSA measure associated	
Statistical Parity	$Var(\mathbb{E}[f(\mathbf{X},S) S]) o Sob_{\mathcal{S}}(f(\mathbf{X},S))$	
Avoiding Disparate Treatment	$\mathbb{E}[Var(f(\mathbf{X},S) X)] o SobT_S(f(\mathbf{X},S))$	
Equality of odds	$\mathbb{E}[Var(\mathbb{E}[f(\mathbf{X}) S,Y] Y)] \to \mathit{CVM}^{\mathit{ind}}(f(\mathbf{X},S),S Y)$	
Avoiding Disparate Mistreatment	$Var(\mathbb{E}[\ell(f(\mathbf{X}, S), Y) S]) \rightarrow Sob_{S}(\ell(f(\mathbf{X}, S), Y))$	

Table 3: Common fairness definitions and associated GSA measures

Consequences of this theoretical link:

generalization of the fairness definitions to non-binary variables (i.e. S ∈ {0, 1} → S ∈ ℝ),

Consequences of this theoretical link:

- generalization of the fairness definitions to non-binary variables (i.e. $S \in \{0, 1\} \rightarrow S \in \mathbb{R}$),
- fairness with respect to the predictor vs the error of the predictor (i.e GSA(f(X, S)) vs GSA(↓(f(X, S), Y))),

Consequences of this theoretical link:

- generalization of the fairness definitions to non-binary variables (i.e. S ∈ {0,1} → S ∈ ℝ),
- fairness with respect to the predictor vs the error of the predictor (i.e GSA(f(X, S)) vs GSA(‡(f(X, S), Y))),
- definition of perfect and approximate fairness (i.e. GSA(f(X, S)) ≤ ε, ε small).

Metamodels & Audits

- Sometimes, f is not accessible or is too costly.
- We can use an **approximation** \hat{f} of f.
- Question: if GSA_i is an index defined earlier, how close is GSA_i(f)
 to GSA_i(f)?
- Previous works: [1], [4]...

We extend [4] to all the Sobol'-based indices defined earlier.

GSA index	Associated upper-bound	
Extended Sobol' indices	$\frac{\mathbb{E}\left\ f-\widehat{f}\right\ _{2}^{2}}{Var(f)}$	
Extended Cramér-von-Mises indices	$\mathbb{E}\left\ f-\widehat{f}\right\ _{2}$	
Shapley indices	$2 imes rac{\mathbb{E}\left\ f-\widehat{f}\right\ _{2}^{2}}{\operatorname{Var}(f)}$	

 Table 4: Risk bounds for the various used GSA indices.

Next step: asymptotic rates, more if possible.

Metamodels & Audits

Translation in the Fairness world: audits!

- Corporations may be reticent about showing their algorithms for audits.
- Using GSA, we propose techniques for auditing using only metamodels.
- Warning: beware of "fair-washing"!

GSA 2: UQ strikes back!

What if **input distribution is not certain**? Most visual example:

$$\mathbb{P}_{X} = \varphi_{\theta}(x) dx, \theta \in \Theta.$$

What if **input distribution is not certain**? Most visual example:

 $\mathbb{P}_{X} = \varphi_{\theta}(x) dx, \theta \in \Theta.$

What happens to the GSA indices?

Second **level of uncertainty**: random distribution on θ .

 $GSA2_{X_i,\theta_i}(f) = GSA_{\theta_i}(GSA_{X_i}(f)).$

Note: Initial idea from [3].

"Do you want a double loop or a single loop with this?"

Figure 1: Workflow GSA2 in single loop

Figure 2: Workflow GSA2 in double loop

Pick'n'Freeze or Chatterjee estimators are consistent.

Fairness certification?

Training and real-life distributions can be different. We aim at **certifying fairness against distributional changes**.

- Link between GSA and Group Fairness
- Behaviour of Sobol'-based indices under metamodel usage & Fairness audits.
- Second-level GSA and hints for Fairness certification.

Thanks for listening!

References

- Alexandre Janon, Maëlle Nodet, and Clémentine Prieur.
 "Uncertainties assessment in global sensitivity indices estimation from metamodels". In: *International Journal for Uncertainty Quantification* 4.1 (2014).
- Thierry A Mara, Stefano Tarantola, and Paola Annoni.
 "Non-parametric methods for global sensitivity analysis of model output with dependent inputs". In: *Environmental modelling & software* 72 (2015), pp. 173–183.
- [3] Anouar Meynaoui, Amandine Marrel, and Béatrice Laurent. "New statistical methodology for second level global sensitivity analysis". In: arXiv preprint arXiv:1902.07030 (2019).
- [4] Ivan Panin. "Risk of estimators for Sobol'sensitivity indices based on metamodels". In: *Electronic Journal of Statistics* 15.1 (2021), pp. 235–281.

$$CvM_{X_{i}}(f) := \int Sob_{X_{i}}(\mathbb{1}_{f(.) \leqslant t}) \frac{\operatorname{Var}(\mathbb{1}_{f(.) \leqslant t})}{\int \operatorname{Var}(\mathbb{1}_{f(.) \leqslant t}) dt} dt.$$
(3)

Note: Shapley indices are also related to Sobol' indices.

$$\cos^{2}(\alpha) - \cos^{2}(\alpha + \delta) = \frac{\cos(2\alpha)}{2} - \frac{\cos(2\alpha + 2\delta)}{2}$$
$$\sin(\theta)\sin(\varphi) = \frac{\cos(\theta - \varphi) - \cos(\theta + \varphi)}{2}$$

$$\cos^{2}(\alpha) - \cos^{2}(\alpha + \delta) = \frac{\cos(2\alpha)}{2} - \frac{\cos(2\alpha + 2\delta)}{2}$$
$$\sin(\theta)\sin(\varphi) = \frac{\cos(\theta - \varphi) - \cos(\theta + \varphi)}{2}$$
$$|\cos^{2}(\alpha) - \cos^{2}(\alpha + \delta)| = \sin(2\alpha + \delta)\sin(\delta)$$

