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Context

Uncertainty Quantification plays an essential role in risk assessment and decision-making.

Example: While estimating natural gas reserves, companies should comply with Securities and
Exchange Commission rules.

1P 2P 3P

90% wells produce 50% wells produce 10% wells produce more
more than 1P predictions more than 2P predictions more than 3P predictions

(proven) (probable) (possible)

However, many approaches and ML models do not fit or may require huge amount of data to
predict uncertainty (e.g. jackknife, bootstrap).
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Introduction

Consider a standard problem of Kriging with Gaussian Processes [Rasmussen and Williams,
2005]: d-dimensional input dataset X =

(
x(1), ... , x(n)) containing n observations with an output

vector y =
(
y (1), ... , y (n)).
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Modelling with Gaussian Processes

Ingredients: A training set (X, y) = {(x(i), y (i))}n
i=1, a family of covariance function {kσ2,θ}

with dim(θ) = d and a new point to predict xnew.

Assumption: Assumption of the Gaussian Processes prior.(
Y (x(i))

)n

i=1
|β,σ2, θ,σ2

ϵ ∼ N (Fβ, K),

where m = Fβ is the trend and K =
(

kσ2,θ
(
x(i), x(j)))n

i ,j=1
+ σ2

ϵ In is the covariance matrix.

Theorem: The posterior predictive distribution is Gaussian

Y (xnew)|X, y , β,σ2, θ,σ2
ϵ ∼ N

(
ỹ(xnew), σ̃2(xnew)

)
Result: Uncertainties are fully characterized

PI1−α (xnew) =
[
ỹ(xnew) + qα/2 σ̃(xnew); ỹ(xnew) + q1−α/2 σ̃(xnew)

]
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Learning Gaussian Processes model i

The nugget effect σ̂2
ϵ can be estimated by a sequential approach [Iooss and Marrel, 2019].

The hyperparameters (σ2, θ) can be estimated either by:

• The Maximum Likelihood (ML) that maximizes the likelihood so that the optimized
model produces observed data with the highest probability.

(σ̂2
ML, θ̂ML) ∈ argminσ2,θ ℓ(σ2, θ | y) =y⊤Ky + log (det K) .

where K = K−1 − K−1F
(
F⊤K−1F

)−1 F⊤K−1.
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Learning Gaussian Processes model ii

• The Mean Squared Error Cross-Validation (MSE-CV) [Bachoc, 2013] that minimizes
the MSE when predicting y (i) using all other points (X−i , y−i) (Leave-One-Out)

(σ̂2
MSE , θ̂MSE ) ∈ argminσ2,θ

1
n

n∑
i=1

(
y (i) − ỹi

)2
= y⊤K Diag

(
K
)−2 K y .

The regression coefficients β̂ are estimated by Generalized Least Squares method

β̂ =
(
F⊤K−1F

)−1 F⊤K−1y

once the hyperparameters (σ̂2
ML, θ̂ML) or (σ̂2

MSE , θ̂MSE ) are obtained.
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Well-specified vs misspecified models

Formal definition of a well-specified model: The model is said to be well-specified if there
exists a couple of hyperparameters (σ̂2

0 , θ̂0) such that y is considered as a realization of a GP
model with covariance function k σ̂2

0 ,θ̂0
.

Informal definition of a well-specified model: The model is said to be well-specified if y
satisfies the normality given the obtained hyperparameters by MLE method (σ̂2

ML, θ̂ML).
This result can be verified only empirically (e.g. graphically or using Shapiro test on the
predictive distribution).

Misspecified model: when the model is not well-specified.
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Challenges

In some cases, the model or the data may not honour all assumptions, hence no guarantees that
Prediction intervals are well estimated by the Maximum Likelihood method [Bachoc, 2013].

The MSE-CV method is more efficient when the model is misspecified and adapted for
point-wise prediction [Bachoc, 2013] but the predictive variance may not be well estimated.
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The main ideas of the paper

• Consider the estimation of covariance hyperparameters in a misspecified model setting.

• Propose a CV-based approach for a robust estimation of the model hyperparameters.

• Improve the quality of the estimated Predictive Intervals to achieve a nominal confidence
level.
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Estimating Prediction Intervals bounds by Cross-Validation i

Quick Reminder of the Leave-One-Out method:

Assume σ̂2
ϵ is known or has been estimated.

For given hyperparameters (σ2, θ), "build" n GP models where each model has been trained on
(X−i , y−i) to predict, at each point x(i),

ỹi = ỹ(x(i)) the predictive mean,
σ̃2

i = σ̃2(x(i)) the predictive variance,
ỹ a

i = ỹi + qa × σ̃i the PI bound for a given rate a.

In reality, we do not "build" n models, we have direct formulas [Dubrule, 1983] to estimate ỹi

and σ̃2
i .
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ỹ a
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ỹi = ỹ(x(i)) the predictive mean,
σ̃2

i = σ̃2(x(i)) the predictive variance,
ỹ a
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Estimating Prediction Intervals bounds by Cross-Validation ii

How to insure that the PI bound ỹa = (ỹ a
i )n

i=1 covers
exactly a × 100% (e.g. 95%) of true values ?

By modifying the predictive distribution at each point.

i.e. By calibrating the hyperparameters of the model.

i.e. By optimizing model’s hyperparameters with respect
to a special metric ψa.
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Robust Prediction Intervals Estimation i

Consider

ψa
(
σ2, θ

)
= 1

n

n∑
i=1

1
{

y (i) − ỹi
σ̃i

≤ qa

}
(i.e. the number of predictions falling below qa).

= 1
n

n∑
i=1

1


(
Ky

)
i√(

K
)

i ,i

≤ qa

 (Virtual Cross-Validation formulas of Dubrule [1983])

≃ ψ(δ)
a

(
σ2, θ

)
(for a continuous function ψ(δ)

a converging point-wise to ψa).

If ψa
(
σ2, θ

)
= a for some hyperparameters

(
σ2, θ

)
then your model has learned to estimate the

PI bound ỹa such that a × 100% of true values y are below ỹa.
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Robust Prediction Intervals Estimation ii

Challenge 1: ψ(δ)
a is piece-wise constant, there would be an infinite number of solutions in the

search space H.

Solution: Reformulate the problem i.e. choose the closest solution (σ2, θ) to (σ2
0 , θ0) (ML or

MSE-CV solution) using a similarity measure d (Wasserstein distance [Masarotto et al., 2019])

arg min
(σ2,θ)

d2 ((σ2, θ), (σ2
0 , θ0)

)
.

Challenge 2: The resolution of this problem may be too costly when the dimension d is high.

Solution: Reduce the dimension of the search space H by applying the relaxation method i.e. fix
θ0 ∈ (θ̂ML, θ̂MSE ), λ ∈ (0, +∞) and solve for σ2

ψ(δ)
a (σ2,λθ0) = a
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Robust Prediction Intervals Estimation iii

• Take the smallest variance σ2
opt(λ) that satisfies ψ(δ)

a (σ2,λθ0) = a.
(In the kriging framework, σ2 should be as small as possible).

• Plug this solution in the following minimization problem

arg min
λ∈(0,+∞)

d2((σ2
opt(λ), λθ0), (σ2

0 , θ0)
)

Proposition: Under appropriate hypotheses, this problem admits at least a solution λ∗.

• Update the model by considering the hyperparameters (σ2
opt(λ), λ∗θ0) and β̂

∗
opt (with GLS

formulas).
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General comments on the method

Comment 1: When there is no nugget effect, the proposition does not hold for Matérn kernels
with ν > 2.
We can justify it by the fact that Matérn kernels with ν > 2 are less robust for uncertainty
quantification.

Comment 2: The function L(λ) = d2((σ2
opt(λ),λθ0), (σ2

0 , θ0)
)

is continuous and coercive,
thus, a minimize λ∗ exists.

Comment 3: The problem can be solved numerically using the golden-section search method.
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What happens exactly to the predictive distribution? i

Consider the LOO standardized predictive distribution of ỹ =
(
(y (i) − ỹi)/σ̃i

)n
i=1.

0.0

0.2

0.4

0.6

0.8

1.0

−2 −1 0 1 2
Standardized Output (quantile)

Em
pi

ric
ia

l C
ov

er
ag

e

Model MLE Model Normal distribution

N. Acharki 15



What happens exactly to the predictive distribution? ii

The ML model overestimates the PI bound of level 90% (here the empirical coverage
P90 = 94%).
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What happens exactly to the predictive distribution? iii

Target the true PI bound of level 90%. Infinite distributions that coincide with the standard
normal distribution on point (qa, a) = (1.28, 0.90) are possible.
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What happens exactly to the predictive distribution? iv

Pick the optimal distribution (obtained from λ∗) that is close to MLE wrt Wasserstein distance .
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Robust Prediction Intervals Estimation iv

The main interest of the Robust Prediction Interval Estimation (RPIE) method:

• A GP model GPα/2 able to predict the bound Ỹα/2 such that α/2 × 100% of true values
are below Ỹα/2.

• A GP model GP1−α/2 able to predict the bound Ỹ1−α/2 such that (1 − α/2) × 100% of
true values are below Ỹ1−α/2.

Result: Prediction Intervals respecting as best as possible the optimal coverage rate 1 − α.
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Benchmark: the Full-Bayesian GP

The Full-Bayesian GP assumes a prior on the hyperparameters (σ2, θ) and

p(ynew | y) =
∫∫

p(ynew | y ,σ2, θ)p(σ2, θ | y) dσ2dθ,

where p(ynew | σ2, θ
)

is given by the posterior predictive distribution of the GP model.

The predictive distribution is estimated as

p(ynew | y) ≃ 1
N

N∑
i=1

p(ynew | y ,σ2
i , θi),

where (σ2
i , θi) is the i-th sample drawn from the posterior distribution p(σ2, θ | y) by MCMC.

PI1−α are obtained from the empirical α/2- and 1 −α/2-quantiles of the sample
(
Yi(xnew)

)N
i=1.
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Numerical results: evaluation metrics

The Leave-One-Out Coverage Probability P̃1−α on training set and CP on testing set :

P̃1−α = 1
n

n∑
i=1

1{y (i) ∈ PI1−α(x(i))},

CP1−α = 1
ntest

ntest∑
i=1

1{y (i)
test ∈ PI1−α

(
x(i)

test

)
}

The mean (MPIW) and standard-deviation (SdPIW) of Prediction Intervals widths:

MPIW1−α = 1
ntest

ntest∑
i=1

∣∣∣PI1−α

(
x(i)

test
)∣∣∣

SdPIW1−α =
( 1

ntest

ntest∑
i=1

[∣∣PI1−α

(
x(i)

test
)∣∣ − MPIW1−α

]2 )1/2
.
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Toy example: the Morokoff & Caflisch function i

We consider the Morokoff and Caflisch [1995] function defined on [0, 1]d by

f (x) = 1
2
(

1 + 1
d

)d d∏
i=1

(xi)1/d .

X has n = 600 observations and d = 10 variables, with a train-test split rate of 75-25%.

y is generated as y (i) = f (x(i)) + ϵ(i) where ϵ(i) are sampled i.i.d. over N (0,σ2
ϵ = 10−4).

Covariance model family k: Matérn 5/2 anisotropic geometric correlation model.

Targeted confidence level: 1 − α = 90%.
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Toy example: the Morokoff & Caflisch function ii

Before RPIE After RPIE Full-Bayesian

MLE MSE-CV MLE MSE-CV -

P̃1−α 93.6 98.3 90.0 90.0 93.8
CP1−α 94.0 98.0 92.6 87.3 93.3

MPIW1−α 1.68 10−1 1.81 10−1 5.51 10−2 5.78 10−2 1.66 10−1

SdPIW1−α 9.61 10−3 4.16 10−2 1.29 10−2 1.41 10−2 9.27 10−3

Ct 1min 16s 24min 18s 3min 55s 27min 43s 4h 43min 38s

P̃1−α: The Leave-One-Out CP in % on the training set; CP1−α: CP in % on the testing set; MPIW: Mean of Prediction
Interval widths; SdPIW: standard deviation of Prediction Interval widths and Ct: computational time.
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Industrial case: Predicting uncertainty for gas production i

A field dataset containing n = 1850 wells with d = 11 dimensional inputs X, the output y is the
Cumulative Production of natural gas over 12 months.

Targeted confidence level 1 − α = 80%

MLE before RPIE MLE after RPIE

P̃1−α 91.1 79.9

CP1−α 94.3 83.2
MPIW1−α 1.53 1.40
SdPIW1−α 2.20 10−1 1.40 10−2

Ct 17min 47s 53min 21s

P̃1−α: The Leave-One-Out CP in % on the training set; CP1−α: CP in % on Validation set; MPIW1−α: Mean of Prediction
Interval widths; SdPIW1−α: standard deviation of Prediction Interval widths and Ct: computational time.
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Industrial case: Predicting uncertainty for gas production ii

Coverage Probability on Validation set I :  94.3 %  
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(a) Before the RPIE on log output

Coverage Probability on Validation set I :  82.4 %  
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(b) After the RPIE on log output
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Conclusion

• Consider the estimation of covariance hyperparameters in a misspecified model setting to
improve Prediction Intervals.

• The RPIE method gives better Prediction Intervals estimation if compared to Maximum
Likelihood or Full-Bayesian approaches.

• Categorial inputs should be considered in a future work with group kernels [Roustant et al.,
2020]
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