Robust Prediction Interval Estimation for Gaussian Processes by Cross-Validation Method

MASCOT-NUM annual meeting, Clermont-Ferrand, France.

Naoufal Acharki 1,2, Josselin Garnier1, Antoine Bertoncello2

June 6, 2022

¹Centre de Mathématiques Appliquées (CMAP), Ecole Polytechnique ²TotalEnergies OneTech.

Context

Uncertainty Quantification plays an essential role in risk assessment and decision-making.

Example: While estimating natural gas reserves, companies should comply with Securities and Exchange Commission rules.

1P	2P	3P	
90% wells produce	50% wells produce	10% wells produce more	
more than 1P predictions	more than 2P predictions	more than 3P predictions	
(proven)	(probable)	(possible)	

However, many approaches and ML models do not fit or may require huge amount of data to predict uncertainty (e.g. jackknife, bootstrap).

Introduction

Consider a standard problem of Kriging with Gaussian Processes [Rasmussen and Williams, 2005]: *d*-dimensional input dataset $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)})$ containing *n* observations with an output vector $\mathbf{y} = (y^{(1)}, \dots, y^{(n)})$.

Ingredients: A training set $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^{n}$, a family of covariance function $\{\mathbf{k}_{\sigma^2, \theta}\}$ with dim $(\theta) = d$ and a new point to predict \mathbf{x}_{new} .

Ingredients: A training set $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^n$, a family of covariance function $\{\mathbf{k}_{\sigma^2, \theta}\}$ with dim $(\theta) = d$ and a new point to predict \mathbf{x}_{new} .

Assumption: Assumption of the Gaussian Processes prior.

$$\left(Y(\boldsymbol{x}^{(i)})\right)_{i=1}^{n}|\boldsymbol{\beta},\sigma^{2},\boldsymbol{\theta},\sigma^{2}_{\epsilon}\sim\mathcal{N}(\mathbf{F}\boldsymbol{\beta},\mathbf{K}),$$

Ingredients: A training set $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^{n}$, a family of covariance function $\{\mathbf{k}_{\sigma^{2}, \theta}\}$ with dim $(\theta) = d$ and a new point to predict \mathbf{x}_{new} .

Assumption: Assumption of the Gaussian Processes prior.

$$\left(Y(\mathbf{x}^{(i)})\right)_{i=1}^{n} | \boldsymbol{\beta}, \sigma^{2}, \boldsymbol{\theta}, \sigma_{\epsilon}^{2} \sim \mathcal{N}(\mathbf{F}\boldsymbol{\beta}, \mathbf{K}),$$

where $\boldsymbol{m} = \boldsymbol{\mathsf{F}}\boldsymbol{\beta}$ is the trend and $\boldsymbol{\mathsf{K}} = \left(\boldsymbol{k}_{\sigma^2,\boldsymbol{\theta}}(\boldsymbol{x}^{(i)},\boldsymbol{x}^{(j)})\right)_{i,j=1}^n + \sigma_{\epsilon}^2 \boldsymbol{\mathsf{I}}_n$ is the covariance matrix.

Ingredients: A training set $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^n$, a family of covariance function $\{\mathbf{k}_{\sigma^2, \theta}\}$ with dim $(\theta) = d$ and a new point to predict \mathbf{x}_{new} .

Assumption: Assumption of the Gaussian Processes prior.

$$\left(Y(\mathbf{x}^{(i)})\right)_{i=1}^{n} | \boldsymbol{\beta}, \sigma^{2}, \boldsymbol{\theta}, \sigma_{\epsilon}^{2} \sim \mathcal{N}(\mathbf{F}\boldsymbol{\beta}, \mathbf{K}),$$

where $\boldsymbol{m} = \boldsymbol{\mathsf{F}}\boldsymbol{\beta}$ is the trend and $\boldsymbol{\mathsf{K}} = \left(\boldsymbol{k}_{\sigma^2,\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)},\boldsymbol{x}^{(j)}\right)\right)_{i,j=1}^n + \sigma_{\epsilon}^2 \boldsymbol{\mathsf{I}}_n$ is the covariance matrix.

Theorem: The posterior predictive distribution is Gaussian

$$Y(m{x}_{ ext{new}})|m{X},m{y},m{eta},\sigma^2,m{ heta},\sigma^2_\epsilon\sim\mathcal{N}\left(ilde{y}(m{x}_{ ext{new}}), ilde{\sigma}^2(m{x}_{ ext{new}})
ight)$$

Ingredients: A training set $(\mathbf{X}, \mathbf{y}) = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^n$, a family of covariance function $\{\mathbf{k}_{\sigma^2, \theta}\}$ with dim $(\theta) = d$ and a new point to predict \mathbf{x}_{new} .

Assumption: Assumption of the Gaussian Processes prior.

$$\left(Y(\mathbf{x}^{(i)})\right)_{i=1}^{n} | \boldsymbol{\beta}, \sigma^{2}, \boldsymbol{\theta}, \sigma_{\epsilon}^{2} \sim \mathcal{N}(\mathbf{F}\boldsymbol{\beta}, \mathbf{K}),$$

where $\boldsymbol{m} = \boldsymbol{\mathsf{F}}\boldsymbol{\beta}$ is the trend and $\boldsymbol{\mathsf{K}} = \left(\boldsymbol{k}_{\sigma^2,\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)},\boldsymbol{x}^{(j)}\right)\right)_{i,j=1}^n + \sigma_{\epsilon}^2 \boldsymbol{\mathsf{I}}_n$ is the covariance matrix.

Theorem: The posterior predictive distribution is Gaussian

$$Y(m{x}_{ ext{new}})|m{X},m{y},m{eta},\sigma^2,m{ heta},\sigma^2_\epsilon\sim\mathcal{N}\left(ilde{y}(m{x}_{ ext{new}}), ilde{\sigma}^2(m{x}_{ ext{new}})
ight)$$

Result: Uncertainties are fully characterized

$$\mathcal{PI}_{1-lpha}\left(oldsymbol{x}_{ ext{new}}
ight) = \left[\widetilde{y}(oldsymbol{x}_{ ext{new}}) + q_{lpha/2} \ \widetilde{\sigma}(oldsymbol{x}_{ ext{new}}); \ \widetilde{y}(oldsymbol{x}_{ ext{new}}) + q_{1-lpha/2} \ \widetilde{\sigma}(oldsymbol{x}_{ ext{new}})
ight]$$

N. Acharki

The nugget effect $\hat{\sigma}_{\epsilon}^2$ can be estimated by a sequential approach [looss and Marrel, 2019].

The hyperparameters (σ^2, θ) can be estimated either by:

The nugget effect $\hat{\sigma}_{\epsilon}^2$ can be estimated by a sequential approach [looss and Marrel, 2019].

The hyperparameters (σ^2, θ) can be estimated either by:

 The Maximum Likelihood (ML) that maximizes the likelihood so that the optimized model produces observed data with the highest probability.

$$(\widehat{\sigma}_{ML}^2, \widehat{\theta}_{ML}) \in \operatorname{argmin}_{\sigma^2, \theta} \ell(\sigma^2, \theta \mid y) = y^\top \overline{\mathsf{K}} y + \log (\det \mathsf{K}).$$

where $\overline{\mathbf{K}} = \mathbf{K}^{-1} - \mathbf{K}^{-1} \mathbf{F} \left(\mathbf{F}^{\top} \mathbf{K}^{-1} \mathbf{F} \right)^{-1} \mathbf{F}^{\top} \mathbf{K}^{-1}$.

Learning Gaussian Processes model ii

 The Mean Squared Error Cross-Validation (MSE-CV) [Bachoc, 2013] that minimizes the MSE when predicting y⁽ⁱ⁾ using all other points (X_{-i}, y_{-i}) (Leave-One-Out)

$$(\hat{\sigma}_{MSE}^2, \hat{\theta}_{MSE}) \in \operatorname{argmin}_{\sigma^2, \theta} \frac{1}{n} \sum_{i=1}^n \left(y^{(i)} - \tilde{y}_i \right)^2 = \mathbf{y}^\top \overline{\mathbf{K}} \operatorname{Diag} \left(\overline{\mathbf{K}} \right)^{-2} \overline{\mathbf{K}} \mathbf{y}.$$

Learning Gaussian Processes model ii

 The Mean Squared Error Cross-Validation (MSE-CV) [Bachoc, 2013] that minimizes the MSE when predicting y⁽ⁱ⁾ using all other points (X_{-i}, y_{-i}) (Leave-One-Out)

$$(\hat{\sigma}_{MSE}^2, \hat{\theta}_{MSE}) \in \operatorname{argmin}_{\sigma^2, \theta} \frac{1}{n} \sum_{i=1}^n \left(y^{(i)} - \tilde{y}_i \right)^2 = \mathbf{y}^\top \overline{\mathbf{K}} \operatorname{Diag} \left(\overline{\mathbf{K}} \right)^{-2} \overline{\mathbf{K}} \mathbf{y}.$$

The regression coefficients \widehat{eta} are estimated by **Generalized Least Squares** method

$$\widehat{oldsymbol{eta}} = \left(\mathbf{F}^{ op} \mathbf{K}^{-1} \mathbf{F}
ight)^{-1} \mathbf{F}^{ op} \mathbf{K}^{-1} oldsymbol{y}$$

once the hyperparameters $(\hat{\sigma}_{ML}^2, \hat{\theta}_{ML})$ or $(\hat{\sigma}_{MSE}^2, \hat{\theta}_{MSE})$ are obtained.

Well-specified vs misspecified models

Formal definition of a well-specified model: The model is said to be *well-specified* if there exists a couple of hyperparameters $(\hat{\sigma}_0^2, \hat{\theta}_0)$ such that **y** is considered as a realization of a GP model with covariance function $\boldsymbol{k}_{\hat{\sigma}_0^2, \hat{\theta}_0}$.

Well-specified vs misspecified models

Formal definition of a well-specified model: The model is said to be *well-specified* if there exists a couple of hyperparameters $(\hat{\sigma}_0^2, \hat{\theta}_0)$ such that **y** is considered as a realization of a GP model with covariance function $\boldsymbol{k}_{\hat{\sigma}_0^2, \hat{\theta}_0}$.

Informal definition of a well-specified model: The model is said to be *well-specified* if **y** satisfies the normality given the obtained hyperparameters by MLE method $(\hat{\sigma}_{ML}^2, \hat{\theta}_{ML})$. This result can be verified only empirically (e.g. graphically or using Shapiro test on the predictive distribution).

Well-specified vs misspecified models

Formal definition of a well-specified model: The model is said to be *well-specified* if there exists a couple of hyperparameters $(\hat{\sigma}_0^2, \hat{\theta}_0)$ such that **y** is considered as a realization of a GP model with covariance function $\boldsymbol{k}_{\hat{\sigma}_0^2, \hat{\theta}_0}$.

Informal definition of a well-specified model: The model is said to be *well-specified* if **y** satisfies the normality given the obtained hyperparameters by MLE method $(\hat{\sigma}_{ML}^2, \hat{\theta}_{ML})$. This result can be verified only empirically (e.g. graphically or using Shapiro test on the predictive distribution).

Misspecified model: when the model is not well-specified.

Challenges

In some cases, the model or the data may not honour all assumptions, hence no guarantees that Prediction intervals are well estimated by the **Maximum Likelihood** method [Bachoc, 2013].

Challenges

In some cases, the model or the data may not honour all assumptions, hence no guarantees that Prediction intervals are well estimated by the **Maximum Likelihood** method [Bachoc, 2013].

The **MSE-CV** method is more efficient when the model is misspecified and adapted for point-wise prediction [Bachoc, 2013] but the predictive variance may not be well estimated.

The main ideas of the paper

• Consider the estimation of covariance hyperparameters in a misspecified model setting.

• Propose a CV-based approach for a <u>robust</u> estimation of the model hyperparameters.

 Improve the quality of the estimated <u>Predictive Intervals</u> to achieve a nominal confidence level.

Quick Reminder of the Leave-One-Out method:

Quick Reminder of the Leave-One-Out method:

Assume $\widehat{\sigma}_{\epsilon}^2$ is known or has been estimated.

Quick Reminder of the Leave-One-Out method:

Assume $\widehat{\sigma}_{\epsilon}^2$ is known or has been estimated.

For given hyperparameters (σ^2, θ) , "build" *n* GP models where each model has been trained on $(\mathbf{X}_{-i}, \mathbf{y}_{-i})$ to predict, at each point $\mathbf{x}^{(i)}$,

 $\tilde{y}_i = \tilde{y}(\mathbf{x}^{(i)})$ the predictive mean, $\tilde{\sigma}_i^2 = \tilde{\sigma}^2(\mathbf{x}^{(i)})$ the predictive variance, $\tilde{y}_i^a = \tilde{y}_i + q_a \times \tilde{\sigma}_i$ the PI bound for a given rate a.

Quick Reminder of the Leave-One-Out method:

Assume $\widehat{\sigma}_{\epsilon}^2$ is known or has been estimated.

For given hyperparameters (σ^2 , θ), "build" *n* GP models where each model has been trained on $(\mathbf{X}_{-i}, \mathbf{y}_{-i})$ to predict, at each point $\mathbf{x}^{(i)}$,

 $\tilde{y}_i = \tilde{y}(\mathbf{x}^{(i)})$ the predictive mean, $\tilde{\sigma}_i^2 = \tilde{\sigma}^2(\mathbf{x}^{(i)})$ the predictive variance, $\tilde{y}_i^a = \tilde{y}_i + q_a \times \tilde{\sigma}_i$ the PI bound for a given rate a.

In reality, we do not "build" *n* models, we have direct formulas [Dubrule, 1983] to estimate \tilde{y}_i and $\tilde{\sigma}_i^2$.

 Predicted mean X True value ↔ PI bounds yn 🕽 Dutput y V1 1 ŷ₁ ($\tilde{y}_{n-1}^{0.90}$ \tilde{y}_{n-1} x_2 x_1 x_3 x_{n-1} x., Input **x**

How to insure that the PI bound $\tilde{\mathbf{y}}^a = (\tilde{y}_i^a)_{i=1}^n$ covers exactly $a \times 100\%$ (e.g. 95%) of true values ?

 $\begin{array}{c|c} \mbox{Predicted mean} & \mbox{True value} & \mbox{\rightarrow Pl bounds} \\ \hline \\ \mbox{y_1} & \mbox{y_2} & \mbox{y_3} & \mbox{y_1} & \mbox{y_1} & \mbox{y_1} & \mbox{y_2} & \mbox{y_1} & \mbox{y_2} & \mbox{y_1} & \mbox{y_2} & \mbox{y_2} & \mbox{y_1} & \mbox{y_2} & \mbox{y_2} & \mbox{y_1} & \mbox{y_1} & \mbox{y_2} & \mbox{y_1} & \mbox{y_2} & \mbox{y_1} & \mbox{y_1} & \mbox{y_2} & \mbox{y_1} & \$

How to insure that the PI bound $\tilde{\mathbf{y}}^a = (\tilde{y}_i^a)_{i=1}^n$ covers exactly $a \times 100\%$ (e.g. 95%) of true values ?

By modifying the predictive distribution at each point.

How to insure that the PI bound $\tilde{\mathbf{y}}^a = (\tilde{y}_i^a)_{i=1}^n$ covers exactly $a \times 100\%$ (e.g. 95%) of true values ?

By modifying the predictive distribution at each point.

i.e. By calibrating the hyperparameters of the model.

How to insure that the PI bound $\tilde{\mathbf{y}}^a = (\tilde{y}_i^a)_{i=1}^n$ covers exactly $a \times 100\%$ (e.g. 95%) of true values ?

By modifying the predictive distribution at each point.

i.e. By calibrating the hyperparameters of the model.

i.e. By optimizing model's hyperparameters with respect to a special metric $\psi_{\textbf{a}}.$

Consider

$$\psi_a\left(\sigma^2,\boldsymbol{\theta}\right) = \frac{1}{n}\sum_{i=1}^n \mathbf{1}\left\{\frac{y^{(i)} - \tilde{y}_i}{\tilde{\sigma}_i} \le q_a\right\} \quad (\text{i.e. the number of predictions falling below } q_a).$$

Consider

$$\begin{split} \psi_{a}\left(\sigma^{2},\boldsymbol{\theta}\right) &= \frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\left\{\frac{y^{(i)}-\tilde{y}_{i}}{\tilde{\sigma}_{i}} \leq q_{a}\right\} \quad (\text{i.e. the number of predictions falling below } q_{a}).\\ &= \frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\left\{\frac{\left(\overline{\mathsf{K}}\mathbf{y}\right)_{i}}{\sqrt{\left(\overline{\mathsf{K}}\right)_{i,i}}} \leq q_{a}\right\} \quad (\text{Virtual Cross-Validation formulas of Dubrule [1983]}) \end{split}$$

Consider

$$\begin{split} \psi_{a}\left(\sigma^{2},\boldsymbol{\theta}\right) &= \frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\left\{\frac{y^{(i)}-\tilde{y}_{i}}{\tilde{\sigma}_{i}} \leq q_{a}\right\} \quad (\text{i.e. the number of predictions falling below } q_{a}).\\ &= \frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\left\{\frac{\left(\overline{\mathbf{K}}\mathbf{y}\right)_{i}}{\sqrt{\left(\overline{\mathbf{K}}\right)_{i,i}}} \leq q_{a}\right\} \quad (\text{Virtual Cross-Validation formulas of Dubrule [1983]})\\ &\simeq \psi_{a}^{\left(\delta\right)}\left(\sigma^{2},\boldsymbol{\theta}\right) \quad (\text{for a continuous function } \psi_{a}^{\left(\delta\right)} \text{ converging point-wise to } \psi_{a}). \end{split}$$

Consider

$$\begin{split} \psi_{a}\left(\sigma^{2},\boldsymbol{\theta}\right) &= \frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\left\{\frac{y^{(i)}-\tilde{y}_{i}}{\tilde{\sigma}_{i}} \leq q_{a}\right\} \quad (\text{i.e. the number of predictions falling below } q_{a}).\\ &= \frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\left\{\frac{\left(\overline{\mathbf{K}}\mathbf{y}\right)_{i}}{\sqrt{\left(\overline{\mathbf{K}}\right)_{i,i}}} \leq q_{a}\right\} \quad (\text{Virtual Cross-Validation formulas of Dubrule [1983]})\\ &\simeq \psi_{a}^{\left(\delta\right)}\left(\sigma^{2},\boldsymbol{\theta}\right) \quad (\text{for a continuous function } \psi_{a}^{\left(\delta\right)} \text{ converging point-wise to } \psi_{a}). \end{split}$$

If $\psi_a(\sigma^2, \theta) = a$ for some hyperparameters (σ^2, θ) then your model has learned to estimate the PI bound \tilde{y}^a such that $a \times 100\%$ of true values y are below \tilde{y}^a .

Challenge 1: $\psi_a^{(\delta)}$ is piece-wise constant, there would be an infinite number of solutions in the search space \mathcal{H} .

Challenge 1: $\psi_a^{(\delta)}$ is piece-wise constant, there would be an infinite number of solutions in the search space \mathcal{H} .

Solution: Reformulate the problem i.e. choose the closest solution (σ^2 , θ) to (σ_0^2 , θ_0) (ML or MSE-CV solution) using a similarity measure *d* (Wasserstein distance [Masarotto et al., 2019])

 $\underset{(\sigma^2,\boldsymbol{\theta})}{\arg\min} \ d^2\left((\sigma^2,\boldsymbol{\theta}),(\sigma_0^2,\boldsymbol{\theta}_0)\right).$

Challenge 1: $\psi_a^{(\delta)}$ is piece-wise constant, there would be an infinite number of solutions in the search space \mathcal{H} .

Solution: Reformulate the problem i.e. choose the closest solution (σ^2 , θ) to (σ_0^2 , θ_0) (ML or MSE-CV solution) using a similarity measure *d* (Wasserstein distance [Masarotto et al., 2019])

$$\underset{(\sigma^2,\boldsymbol{\theta})}{\arg\min} \ d^2\left((\sigma^2,\boldsymbol{\theta}),(\sigma_0^2,\boldsymbol{\theta}_0)\right).$$

Challenge 2: The resolution of this problem may be too costly when the dimension d is high.

Challenge 1: $\psi_a^{(\delta)}$ is piece-wise constant, there would be an infinite number of solutions in the search space \mathcal{H} .

Solution: Reformulate the problem i.e. choose the closest solution (σ^2 , θ) to (σ_0^2 , θ_0) (ML or MSE-CV solution) using a similarity measure *d* (Wasserstein distance [Masarotto et al., 2019])

 $\underset{(\sigma^2,\boldsymbol{\theta})}{\arg\min} \ d^2\left((\sigma^2,\boldsymbol{\theta}),(\sigma_0^2,\boldsymbol{\theta}_0)\right).$

Challenge 2: The resolution of this problem may be too costly when the dimension d is high.

Solution: Reduce the dimension of the search space \mathcal{H} by applying *the relaxation* method i.e. fix $\theta_0 \in (\hat{\theta}_{ML}, \hat{\theta}_{MSE}), \lambda \in (0, +\infty)$ and solve for σ^2

$$\psi^{(\delta)}_{\mathsf{a}}(\sigma^2,\lambda oldsymbol{ heta}_0) = \mathsf{a}$$

• Take the smallest variance $\sigma_{opt}^2(\lambda)$ that satisfies $\psi_a^{(\delta)}(\sigma^2, \lambda \theta_0) = a$. (In the kriging framework, σ^2 should be as small as possible).

- Take the smallest variance $\sigma_{opt}^2(\lambda)$ that satisfies $\psi_a^{(\delta)}(\sigma^2, \lambda \theta_0) = a$. (In the kriging framework, σ^2 should be as small as possible).
- Plug this solution in the following minimization problem

$$\argmin_{\lambda \in (0,+\infty)} d^2 ((\sigma_{\text{opt}}^2(\lambda), \lambda \theta_0), (\sigma_0^2, \theta_0))$$

- Take the smallest variance $\sigma_{opt}^2(\lambda)$ that satisfies $\psi_a^{(\delta)}(\sigma^2, \lambda \theta_0) = a$. (In the kriging framework, σ^2 should be as small as possible).
- Plug this solution in the following minimization problem

$$\arg\min_{\lambda\in(0,+\infty)}d^2((\sigma_{\rm opt}^2(\lambda),\lambda\boldsymbol{\theta}_0),(\sigma_0^2,\boldsymbol{\theta}_0))$$

Proposition: Under appropriate hypotheses, this problem admits at least a solution λ^* .

- Take the smallest variance $\sigma_{opt}^2(\lambda)$ that satisfies $\psi_a^{(\delta)}(\sigma^2, \lambda \theta_0) = a$. (In the kriging framework, σ^2 should be as small as possible).
- Plug this solution in the following minimization problem

$$\argmin_{\lambda \in (0,+\infty)} d^2((\sigma_{\text{opt}}^2(\lambda), \lambda \theta_0), (\sigma_0^2, \theta_0))$$

Proposition: Under appropriate hypotheses, this problem admits at least a solution λ^* .

• Update the model by considering the hyperparameters $(\sigma_{opt}^2(\lambda), \lambda^* \theta_0)$ and $\hat{\beta}_{opt}^*$ (with GLS formulas).

Comment 1: When there is no nugget effect, the proposition does not hold for Matérn kernels with $\nu > 2$.

We can justify it by the fact that Matérn kernels with $\nu > 2$ are less robust for uncertainty quantification.

Comment 2: The function $\mathcal{L}(\lambda) = d^2((\sigma_{opt}^2(\lambda), \lambda\theta_0), (\sigma_0^2, \theta_0))$ is continuous and coercive, thus, a minimize λ^* exists.

Comment 3: The problem can be solved numerically using the golden-section search method.

What happens exactly to the predictive distribution? i

Consider the LOO standardized predictive distribution of $\mathbf{\tilde{y}} = ((y^{(i)} - \tilde{y}_i)/\tilde{\sigma}_i)_{i=1}^n$.

What happens exactly to the predictive distribution? ii

The ML model overestimates the PI bound of level 90% (here the empirical coverage P90 = 94%).

What happens exactly to the predictive distribution? iii

Target the *true* PI bound of level 90%. Infinite distributions that coincide with the standard normal distribution on point $(q_a, a) = (1.28, 0.90)$ are possible.

What happens exactly to the predictive distribution? iv

Pick the optimal distribution (obtained from λ^*) that is close to MLE wrt Wasserstein distance .

The main interest of the Robust Prediction Interval Estimation (RPIE) method:

- A GP model $\mathbf{GP}_{\alpha/2}$ able to predict the bound $\tilde{Y}_{\alpha/2}$ such that $\alpha/2 \times 100\%$ of true values are below $\tilde{Y}_{\alpha/2}$.
- A GP model $\mathbf{GP}_{1-\alpha/2}$ able to predict the bound $\tilde{Y}_{1-\alpha/2}$ such that $(1-\alpha/2) \times 100\%$ of true values are below $\tilde{Y}_{1-\alpha/2}$.

Result: Prediction Intervals respecting as best as possible the optimal coverage rate $1 - \alpha$.

Benchmark: the Full-Bayesian GP

The Full-Bayesian GP assumes a *prior* on the hyperparameters ($\sigma^2, heta$) and

Benchmark: the Full-Bayesian GP

The Full-Bayesian GP assumes a *prior* on the hyperparameters (σ^2 , θ) and

$$p(y_{\text{new}} \mid \boldsymbol{y}) = \iint p(y_{\text{new}} \mid \boldsymbol{y}, \sigma^2, \boldsymbol{\theta}) p(\sigma^2, \boldsymbol{\theta} \mid \boldsymbol{y}) \, \mathrm{d}\sigma^2 \mathrm{d}\boldsymbol{\theta},$$

where $p(y_{\text{new}} | \sigma^2, \theta)$ is given by the posterior predictive distribution of the GP model.

Benchmark: the Full-Bayesian GP

The Full-Bayesian GP assumes a *prior* on the hyperparameters (σ^2, θ) and

$$p(y_{\text{new}} \mid \boldsymbol{y}) = \iint p(y_{\text{new}} \mid \boldsymbol{y}, \sigma^2, \boldsymbol{\theta}) p(\sigma^2, \boldsymbol{\theta} \mid \boldsymbol{y}) \, \mathrm{d}\sigma^2 \mathrm{d}\boldsymbol{\theta},$$

where $p(y_{\text{new}} | \sigma^2, \theta)$ is given by the posterior predictive distribution of the GP model.

The predictive distribution is estimated as

$$p(y_{\text{new}} \mid \boldsymbol{y}) \simeq \frac{1}{N} \sum_{i=1}^{N} p(y_{\text{new}} \mid \boldsymbol{y}, \sigma_i^2, \boldsymbol{\theta}_i),$$

where (σ_i^2, θ_i) is the *i*-th sample drawn from the posterior distribution $p(\sigma^2, \theta \mid \mathbf{y})$ by MCMC.

 $\mathcal{PI}_{1-\alpha}$ are obtained from the empirical $\alpha/2$ - and $1-\alpha/2$ -quantiles of the sample $(Y_i(\mathbf{x}_{new}))_{i=1}^N$.

N. Acharki

Numerical results: evaluation metrics

The Leave-One-Out Coverage Probability $\tilde{\mathbb{P}}_{1-\alpha}$ on training set and CP on testing set :

$$\tilde{\mathbb{P}}_{1-\alpha} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ y^{(i)} \in \mathcal{PI}_{1-\alpha}(\mathbf{x}^{(i)}) \},$$
$$\mathbb{CP}_{1-\alpha} = \frac{1}{n_{test}} \sum_{i=1}^{n_{test}} \mathbf{1} \{ y^{(i)}_{test} \in \mathcal{PI}_{1-\alpha}\left(\mathbf{x}^{(i)}_{test}\right) \}$$

The mean (MPIW) and standard-deviation (SdPIW) of Prediction Intervals widths:

$$\mathsf{MPIW}_{1-\alpha} = \frac{1}{n_{test}} \sum_{i=1}^{n_{test}} \left| \mathcal{PI}_{1-\alpha} \left(\mathbf{x}_{test}^{(i)} \right) \right|$$

$$\mathsf{SdPIW}_{1-\alpha} = \Big(\frac{1}{n_{test}} \sum_{i=1}^{n_{test}} \Big[\big| \mathcal{PI}_{1-\alpha} \big(\mathbf{x}_{test}^{(i)} \big) \big| - \mathsf{MPIW}_{1-\alpha} \Big]^2 \Big)^{1/2}.$$

N. Acharki

Toy example: the Morokoff & Caflisch function i

We consider the Morokoff and Caflisch [1995] function defined on $[0, 1]^d$ by

$$f(\mathbf{x}) = \frac{1}{2} \left(1 + \frac{1}{d} \right)^d \prod_{i=1}^d (x_i)^{1/d}$$

X has n = 600 observations and d = 10 variables, with a train-test split rate of 75-25%. **y** is generated as $y^{(i)} = f(\mathbf{x}^{(i)}) + \epsilon^{(i)}$ where $\epsilon^{(i)}$ are sampled i.i.d. over $\mathcal{N}(0, \sigma_{\epsilon}^2 = 10^{-4})$. Covariance model family **k**: Matérn 5/2 anisotropic geometric correlation model. Targeted confidence level: $1 - \alpha = 90\%$.

Toy example: the Morokoff & Caflisch function ii

	Before RPIE		After RPIE		Full-Bayesian
	MLE	MSE-CV	MLE	MSE-CV	-
$\tilde{\mathbb{P}}_{1-\alpha}$	93.6	98.3	90.0	90.0	93.8
CP_{1-lpha}	94.0	98.0	92.6	87.3	93.3
$\begin{array}{l} MPIW_{1-\alpha} \\ SdPIW_{1-\alpha} \end{array}$	$1.68 \ 10^{-1}$ 9.61 10^{-3}	$\begin{array}{c} 1.81 10^{-1} \\ 4.16 10^{-2} \end{array}$	5.51 10^{-2} 1.29 10^{-2}	5.78 10^{-2} 1.41 10^{-2}	$1.66 \ 10^{-1}$ 9.27 10^{-3}
Ct	1min 16s	24min 18s	3min 55s	27min 43s	4h 43min 38s

 $\tilde{\mathbb{P}}_{1-\alpha}$: The Leave-One-Out CP in % on the training set; CP_{1-\alpha}: CP in % on the testing set; MPIW: Mean of Prediction Interval widths; SdPIW: standard deviation of Prediction Interval widths and Ct: computational time.

Industrial case: Predicting uncertainty for gas production i

A field dataset containing n = 1850 wells with d = 11 dimensional inputs **X**, the output **y** is the Cumulative Production of natural gas over 12 months.

Targeted confidence level $1 - \alpha = 80\%$

	MLE before RPIE	MLE after RPIE
$\tilde{\mathbb{P}}_{1-\alpha}$	91.1	79.9
CP_{1-lpha}	94.3	83.2
$MPIW_{1-lpha}$	1.53	1.40
$SdPIW_{1-\alpha}$	$2.20 \ 10^{-1}$	$1.40 \ 10^{-2}$
Ct	17min 47s	53min 21s

 $\tilde{\mathbb{P}}_{1-\alpha}$: The Leave-One-Out CP in % on the training set; CP_{1-\alpha}: CP in % on Validation set; MPIW_{1-\alpha}: Mean of Prediction Interval widths; SdPIW_{1-\alpha}: standard deviation of Prediction Interval widths and Ct: computational time.

N. Acharki

Industrial case: Predicting uncertainty for gas production ii

Conclusion

 Consider the estimation of covariance hyperparameters in a misspecified model setting to improve Prediction Intervals.

• The RPIE method gives better Prediction Intervals estimation if compared to Maximum Likelihood or Full-Bayesian approaches.

• Categorial inputs should be considered in a future work with group kernels [Roustant et al., 2020]

References

- F. Bachoc. Cross validation and maximum likelihood estimations of hyper-parameters of gaussian processes with model misspecification. *Computational Statistics & Data Analysis*, 66: 55–69, 2013.
- O. Dubrule. Cross validation of kriging in a unique neighborhood. *Journal of the International Association for Mathematical Geology*, 15(6):687–699, 12 1983.
- B. looss and A. Marrel. Advanced methodology for uncertainty propagation in computer experiments with large number of inputs. *Nuclear Technology*, 205(12):1588–1606, 2019. doi: 10.1080/00295450.2019.1573617.
- V. Masarotto, V. M. Panaretos, and Y. Zemel. Procrustes metrics on covariance operators and optimal transportation of gaussian processes. *Sankhya A*, 81(1):172–213, Feb 2019. ISSN 0976-8378. doi: 10.1007/s13171-018-0130-1.

- W. J. Morokoff and R. E. Caflisch. Quasi-monte carlo integration. *Journal of computational physics*, 122:218–230, 1995.
- C. E. Rasmussen and C. K. I. Williams. *Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)*. The MIT Press, 2005.
- O. Roustant, E. Padonou, Y. Deville, A. Clément, G. Perrin, J. Giorla, and H. Wynn. Group kernels for Gaussian process metamodels with categorical inputs. *SIAM/ASA Journal on Uncertainty Quantification*, 8(2):775–806, 2020. doi: 10.1137/18M1209386.
- Securities and Exchange Commission. Modernization of oil and gas reporting, revisions and additions to the definition section in rule 4-10 of regulation s-x, Jan. 2010. https://www.sec.gov/rules/final/2008/33-8995.pdf.