

Transfer Learning of Statistical Models on Riemannian Manifolds

(2)

(3)

(4)

Tien-Tam Tran, Ines Adouani and Chafik Samir

UCA CNRS LIMOS (UMR 6158)

Introduction

What?

- Transfer Learning: A model learned from one set can be a prior for the second.
- Statistics on Manifolds: The data on manifold is mapped into tangent space by the Log map, from this we consider the covariance, PCA, Linear Regression.
 Why?
- Is model learned in one region are utilized in another?

The geometry of finite probability measures

- Let $I = \{1, ..., n, n + 1\}$ be a finite set.
- Measure space: $\mathcal{P}_+(I) = \{ \mu = \sum_{i \in I} \mu_i \delta^i \mid \mu_i > 0, \forall i \in I, \text{ and } \sum_{i \in I} \mu_i = 1 \}.$
- Tangent space: $T_{\mu}\mathcal{P}_{+}(I) = \{\mu\} \times \mathcal{S}_{0}(I)$, where $\mathcal{S}_{0}(I) = \{\sum_{i \in I} \mu_{i} \delta^{i} \mid \sum_{i \in I} \mu_{i} = 0\}$.
- Fisher-Rao metric: $\mathfrak{g}_{\mu}(X, Y) = \sum_{i \in I} \frac{X_i Y_i}{\mu_i}, \quad \forall X = \sum_{i \in I} X_i \delta^i, Y = \sum_{i \in I} Y_i \delta^i \in T_{\mu} \mathcal{P}_+(I).$
- **Levi-Civita connection** ∇ : Let X, Y be constant vector fields, $\frac{dX}{d\mu}$ is Radon-Nykodym derivative. Then

$$\nabla_X Y|_{\mu} = -\frac{1}{2} \left(\frac{dX \, dY}{d\mu} - \mathfrak{g}_{\mu}(X, Y) \right) \mu, \tag{1}$$

• **Geodesics:** Given $\mu \in \mathcal{P}_+$ and a unit tangent vector $X \in \mathcal{T}_\mu \mathcal{P}_+$. Then there exist a unique geodesic $\alpha(t) = \sum_{i \in I} \alpha_i(t) \delta^i$ in $\mathcal{P}_+(I)$, starting from a point μ with direction X, where

How?

- Let M be manifold and $T_p(M)$ and $T_q(M)$ be tangent spaces.
- Suppose we have a data in T_p(M), Parallel Transport data to T_q(M) then learn and use this model in T_q(M). This scales poorly.
- Different approach is Model Transport: the model is learned in T_p(M) then transport the model to T_q(M). Computational complexity is free from the size of data set.

Geometry on the sphere

A geodesic on the sphere is a great circle, parallel transport given by rotation.

 $\alpha_{i}(t) = \left(\cos\frac{t}{2} + \frac{X_{i}}{\mu_{i}}\sin\frac{t}{2}\right)^{2}\mu_{i}, \text{ for } i \in I.$ $\blacktriangleright \text{ Distance: For every } \mu, \nu \in \mathcal{P}_{+}(I) \text{ we have } d(\mu, \nu) = 2 \arccos\left(\sum_{i \in I} \sqrt{\mu_{i}\nu_{i}}\right).$ $\vdash \text{ Exponential map: } \exp_{\mu}(X) = \sum_{i \in I} \left(\cos\frac{\|X\|_{\mu}}{2} + \frac{X_{i}}{\mu_{i}\|X\|_{\mu}}\sin\frac{\|X\|_{\mu}}{2}\right)^{2}\mu_{i}\delta^{i}.$ $\vdash \text{ Log map: } \log_{\mu}(\nu) = \frac{\ell}{\sin\frac{\tau}{2}}\sum_{i \in I} \left(\sqrt{\frac{\nu_{i}}{\mu_{i}}} - \sum_{j \in I} \sqrt{\nu_{j}\mu_{j}}\right)\mu_{i}\delta^{i}, \text{ where } \ell = d(\mu, \nu).$ $\vdash \text{ Parallel transport: Let } \mu, \nu \in \mathcal{P}_{+}(I) \text{ and } \alpha : [0, \ell] \rightarrow \mathcal{P}_{+}(I) \text{ be a geodesic curve such that } \alpha(0) = \mu \text{ and } \alpha(\ell) = \nu. \text{ The parallel transport, } \Gamma_{\mu \rightarrow \nu} : T_{\mu}\mathcal{P}_{+}(I) \rightarrow T_{\nu}\mathcal{P}_{+}(I), \text{ given by } \Gamma_{\mu \rightarrow \nu}(X) = \sum_{i \in I} \sqrt{\nu_{i}} \left(-C\sqrt{\mu_{i}} \left(2\sin\frac{\ell}{2} - 2\frac{\tau_{i}}{\mu_{i}}\cos\frac{\ell}{2}\right) + \frac{X_{i}}{\sqrt{\mu_{i}}} - 2C\frac{\tau_{i}}{\sqrt{\mu_{i}}}\right)\delta^{i}, \text{ where } \tau \text{ is the unit tangent vector } \tau = \log_{\mu}(\nu)/\ell \text{ and } C = \frac{1}{2}\mathfrak{g}_{\mu}(X, \tau).$ $\vdash \text{ Isometry: By the map } \Phi(\mu) = 2\sum_{i \in I} \sqrt{\mu_{i}}e_{i}, \mathcal{P}_{+}(I) \text{ is isometric to the sphere } \mathbb{S}_{(0,2),+}(I) = \left\{f \in \mathbb{R}^{n+1} \mid f^{i} > 0, \forall i \in I, \text{ and } \sum_{i \in I}(f^{i})^{2} = 4\right\}.$

Pull-back from the sphere, we find again the geodesics and parallel transport.

Transfer Learning

Figure 1:Parallel transport of w at T_f is factored in to two perpendicular components w_1 and w_2 .

Discussion and conclusion

- We have studied the geometry of finite probability measures and its Transfer learning.
- The tangent space $T\mathcal{P}_+(I)$ is trivial.
- Geodesics and Parallel transport are solved explicitly.
- In general, Parallel transport has no closed form, we have to approximate it.
- ► In the Box-plots, we see that the transfered

- We have the data $\{x_i\}_{i=1}^N \subset T_\mu \mathcal{P}_+(I)$ and its labels $\{y_i\}_{i=1}^N$.
- A linear regression model in $\mathcal{T}_{\mu}\mathcal{P}_{+}(I)$ has the following form

$$X \mapsto Y(X) = X^T a + a_0 = \left\langle X, G_{\mu}^{-1} a \right\rangle_{\mu} + a_0,$$
 (5)

where $a_0 \in \mathbb{R}$, while a and $G_{\mu}^{-1}a$ are considered as tangents vectors on $T_{\mu}\mathcal{P}_{+}(I)$, and G_{μ} is the matrix induced by Riemanninan metric.

▶ Let *loss_i* be the loss function associated with y_i , e.g., *loss_i* : $\bar{y}_i \mapsto (\bar{y}_i - y_i)^2$.

Transport the Model:

 $(\beta, \beta_0) = \underset{a \in T_{\mu} \mathcal{P}_+(I), a_0 \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^{N} loss_i(x_i^T a + a_0) \Rightarrow G_{\nu} \Gamma G_{\mu}^{-1} \beta = \underset{b \in T_{\nu} \mathcal{P}_+(I)}{\operatorname{argmin}} \sum_{i=1}^{N} loss_i(\Gamma(x_i)^T b + \beta_0),$ where Γ is the parallel transport from $T_{\mu} \mathcal{P}_+(I)$ to $T_{\nu} \mathcal{P}_+(I)$.

Box-plots of the score for the Logistic Regression Model

models are comparable to the usual one.

References

- O. Freifeld, S. Hauberg, and M. J. Black.
 Model transport: Towards scalable transfer learning on manifolds.
 CVPR, pages 1378–1385, 2014.
- [2] N. Ay, J. Jost, H. Le, and L. Schwachhofer.
 Information geometry.
 Springer, 2017.

 [3] M. Itoh and H. Satoh.
 Geometry of fisher information metric and the barycenter map.
 entropy, pages 1814–1849, 2015. The transfered models learned from ${old S0}$

S0 is the uniform measure, while C1, ..., C10 are chosen randomly.

Acknowledgments

► This work was funded by ANR-IA project.

Tien_Tam.TRAN@doctorant.uca.fr