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• Monocrystalline silicon crystallizes in a
diamond cubic crystal structure which
confers anisotropic elasticity properties.

• The intrinsic heterogeneity of
polycrystalline silicon induce scattering
of the effective mechanical properties
in the structural components of MEMS.

• Due to the stochastic nature of the
variables controlling the final
microstructure, statistical analyses are
required to characterize the variability
ranges in the effective properties for the
reliable design of these microscopic
devices.

• A convolutional neural network (CNN) is first optimized as a baseline
to provide the mapping between the images of polysilicon
microstructure and homogenized Young’s modulus E.

https://doi.org/10.1007/s12633-
019-00209-2

• A convolutional autoencoder (AE) neural network is pre-trained and
employed for transfer learning purposes:

• Following the approach presented in former works1 , stochastic
volume elements (SVE) representing cross-sections of epitaxially
grown polysilicon thin-films have been generated.

• None of the two explored strategies have produced significantly better
results (in terms of quality or convergence speed) than those obtained
by the standard CNN model adopting the default weight initialization
scheme.

• The effectiveness of the transfer learning strategy hinges on the degree
of correlation between the successive tasks as the feature extraction
process has been demonstrated to be highly target-sensitive.

1 Mariani, S. et al, 2011, Int. J. Mult. Comp. Eng, https://doi.org/10.1615/intjmultcompeng.v9.i3.50
2 Quesada-Molina, J.P. et al, 2020, EuroSimE, https://doi.org/10.1109/eurosime48426.2020.9152690
3 Quesada-Molina, J.P. et al, 2022, EuroSimE, https://doi.org/10.1109/EuroSimE54907.2022.9758899
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General implementation details:
❑Optimizer: Adamax (η = 5x10-3, β1 = 0.9, β2 = 0.999, 𝜀 = 1x10-7 )
❑ReduceLROnPlateau (factor=0.2, patience  =5, min η = 1x10-4)
❑Loss: Mean Squared Error (MSE)
❑Convolutional kernel size: [3×3]
❑Pooling kernel size: [2×2]
❑Early stopping patience: 100 epochs
❑Total trainable parameters: 33241
❑Training time: approx. 3 s/epoch (NVIDIA GeForce RTX 3090 GPU)
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❑Total trainable parameters: 50353 
❑Training time: approx. 7 s/epoch  

• Implement a deep learning-based UQ framework capable to account for
material-related uncertainties affecting the reliability of polysilicon
MEMS in a straightforward data-driven manner.

• Explore the potential to enhance the performance of the implemented
deep learning model via a transfer learning strategy, exploiting a
different representation learning approach for the feature extraction.

• Effective elastic properties of epitaxially grown polysilicon thin-films
e.g., the Young’s modulus, E are described by 𝐿𝑜𝑔𝑁 𝜇, 𝜎 characterized
by scale-dependent 𝜇, 𝜎 values.

https://doi.org/10.1109/JMEMS.2009.2039697

https://doi.org/10.1615/intjmul
tcompeng.v9.i3.50

https://community.wolfram.com/groups/-/m/t/1202074

• Different datasets have been assembled featuring small ratios L/ഥ𝐬𝐠,

where L represents the length-scale characterizing the size of the grain
aggregate and ഥ𝑠𝑔 represents the target in-plane size of the grains.

• Scale-dependent statistical indicators
describing the target values of the
generated data are shown in the table:

ഥ𝑠𝑔

𝐿

ഥ𝑠𝑔
{4, 6, 10, 20}

𝐿

https://doi.org/10.1615/intjmul
tcompeng.v9.i3.50

• Generated data has been formatted as single-channel images with a
resolution of 128 px × 128 px, wherein, the grey level represents the in-
plane lattice orientation of each grain.

• Unbalanced datasets aim to better capture the larger variation of the
target values associated with the smaller characteristic SVE sizes.
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J(θ, X) = L(X, gθd ( fθe(X))

X = gθd ( fθe(X))
fθe(X) gθd ( fθe(X))

X 

(I) Fix the weights of the encoder after Stage 1 and update the weights of the fully
connected layers only.

(II) Allow the update of the entire network (encoder + fully connected layers).
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