Auto-Associative Models a non-linear PCA

PHIMECA solutions for robust engineering

Valentin Pibernus ${ }^{1,2}$. Sylvain Girard ${ }^{\mathbf{1}}$. Stéphane Girard ${ }^{2}$. Serge lovleff ${ }^{3}$

${ }^{1}$ Phimeca Engineering, Paris, France
MASCOTANUM
${ }^{2}$ INRIA, Grenoble - Rhone-Alpes, France ${ }^{3}$ UTBM, Belfort-Montbeliard, France

Class of the problem

Figure 1. Class of problems

We study the relation $f(\cdot)$ between G and S. G is a k-manifold with $k \ll p$. The objective is to build a map between G and C in order to perform a dimension reduction.

Figure 2. Shifting mean Gaussians example

Motivation

A machine learning

- frugal when possible
- robust
- rooted in physics
- interpretable and theoretically grounded

Acknowledgements

This work is partly funded by AMIES through the PEPS programme.

Auto-Associative Models

Auto-Associative Models are thought of as a non-linear PCA. These methods are dedicated to the approximation of the dataset by a manifold.
The algorithm is the following. For $i=1, \ldots, k$:

Step 1: Find direction

- Find a direction b_{i} optimizing a given criterion $I_{b_{i}}\left(X^{(i-1)}\right)$.

Step 3: Recover

- Estimate the recovery
function: $s_{i}(t)=$ $\mathbb{E}\left(X^{(i-1)} \mid C^{(i)}=t\right)$.

Step 2: Project

- Compute
$C^{(i)}=P_{b_{i}}\left(X^{(i-1)}\right)$ the
$i^{\text {th }}$ coordinate in C.

> Step 4: Iterate!
> - Compute the residual and restart. $X^{(i)}=$ $X^{(i-1)}-s_{i} \circ P_{b_{i}}\left(X^{(i-1)}\right)$

Composing the regressions enables the reconstruction of complex shaped manifolds.

A powerfull projection criterion

The use of a criterion preserving the first-order neighbourhood structure yields interesting results.

$$
I_{b}(X)=\sum_{i=1}^{n} P_{b}(X)^{2} / \sum_{i=1}^{n} \sum_{j=1}^{n} m_{i, j} P_{b}\left(X_{i}-X_{j}\right)^{2}
$$

The matrix $M=\left(m_{i, j}\right)$ is a first order contiguity matrix whose value is 1 when X_{j} is the nearest neigbor of X_{i}, and 0 otherwise.

Figure 3. AAM vs PCA projection criterion

A non-linear recovery function

Principal Component Analysis

Figure 4. AAM vs PCA shifting Gaussian recovery
$s(t)$ is a univariate function and thus its estimation does not suffer from the curse of dimensionality.

Supervised Auto-Associative Models

Since the aim of dimension reduction is to simplify the regression from $X \in G$ to $Y \in S$, we can use the information in S to supervise the dimension reduction.

We use a contiguity matrix $M_{S}=\left(m_{i, j}\right)$ whose value is 1 when Y_{j} is the nearest neighbour of Y_{i} and 0 otherwise. This projection criterion tries to project the isolign of $f(\cdot)$ on a point. This makes the regression from C to S straightforward.

SIR vs SAAM

Figure 5. SIR against SAAM
SIR : Apply PCA on the barycenter of grouped data.
SAAM : Minimize the projected distance in G from the nearest neighbour in S.

Take home message

AAM and SAAM exploit different ideas

- an "inversible" projection
- a non linear recovery function
- a topological thinking of dimension reduction

