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Class of the problem

Figure 1. Class of problems

We study the relation f (·) between G and
S . G is a k-manifold with k ≪ p. The
objective is to build a map between G and
C in order to perform a dimension
reduction.
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Figure 2. Shifting mean Gaussians example

Motivation
A machine learning

– frugal when possible

– robust

– rooted in physics

– interpretable and theoretically grounded
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Auto-Associative Models
Auto-Associative Models are thought of as a non-linear PCA.
These methods are dedicated to the approximation of the
dataset by a manifold.

The algorithm is the following. For i = 1, . . . , k :

Step 1: Find direction

– Find a direction bi

optimizing a given
criterion Ibi(X

(i−1)).

Step 3: Recover

– Estimate the recovery
function : si(t) =
E(X (i−1)|C (i) = t).

Step 2: Project

– Compute
C (i) = Pbi(X

(i−1)) the
i th coordinate in C .

Step 4: Iterate !

– Compute the residual and
restart. X (i) =
X (i−1)−si◦Pbi(X

(i−1))

Composing the regressions enables the reconstruction of
complex shaped manifolds.

A powerfull projection criterion

The use of a criterion preserving the first-order neighbourhood
structure yields interesting results.

Ib(X ) =
n∑

i=1

Pb(X )2/
n∑

i=1

n∑
j=1

mi ,jPb(Xi − Xj)
2

The matrix M = (mi ,j) is a first order contiguity matrix
whose value is 1 when Xj is the nearest neigbor of Xi , and 0
otherwise.

AAM Projection Criterion PCA Projection Criterion

Figure 3. AAM vs PCA projection criterion

A non-linear recovery function
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Figure 4. AAM vs PCA shifting Gaussian recovery

s(t) is a univariate function and thus its estimation
does not suffer from the curse of dimensionality.

Supervised Auto-Associative Models

Since the aim of dimension reduction is to simplify the
regression from X ∈ G to Y ∈ S , we can use the information
in S to supervise the dimension reduction.

We use a contiguity matrix MS = (mi ,j) whose value is 1
when Yj is the nearest neighbour of Yi and 0 otherwise. This
projection criterion tries to project the isolign of f (·) on a
point. This makes the regression from C to S straightforward.

SIR vs SAAM
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Figure 5. SIR against SAAM

SIR : Apply PCA on the barycenter of grouped data.

SAAM : Minimize the projected distance in G from the nearest
neighbour in S .

Take home message
AAM and SAAM exploit different ideas :

– an ”inversible” projection

– a non linear recovery function

– a topological thinking of dimension reduction


