

Auto-Associative Models a non-linear PCA

Valentin Pibernus^{1,2} · Sylvain Girard¹ · Stéphane Girard² · Serge lovleff³

¹Phimeca Engineering, Paris, France

²INRIA, Grenoble - Rhone-Alpes, France ³UTBM, Belfort-Montbeliard, France

Class of the problem

Figure 1. Class of problems

We study the relation $f(\cdot)$ between G and S. G is a k-manifold with $k \ll p$. The objective is to build a map between G and *C* in order to perform a dimension reduction.

Motivation

- A machine learning
- frugal when possible
- robust
- rooted in physics
- interpretable and theoretically grounded

Acknowledgements

This work is partly funded by AMIES through the PEPS programme.

Auto-Associative Models

Auto-Associative Models are thought of as a non-linear PCA. These methods are dedicated to the approximation of the dataset by a manifold.

A non-linear recovery function

The algorithm is the following. For $i = 1, \ldots, k$:

Step 1: Find direction	Step 2: Project
 Find a direction b_i optimizing a given criterion I_{bi}(X⁽ⁱ⁻¹⁾). 	- Compute $C^{(i)} = P_{b_i}(X^{(i-1)})$ the i^{th} coordinate in C .

Step 3:	Recover
---------	---------

– Estimate the recovery

function : $s_i(t) =$

 $\mathbb{E}(X^{(i-1)}|C^{(i)}=t).$

- Compute the residual and
restart.
$$X^{(i)} =$$

 $X^{(i-1)} - s_i \circ P_{b_i}(X^{(i-1)})$

Composing the regressions enables the reconstruction of complex shaped manifolds.

A powerfull projection criterion

The use of a criterion preserving the first-order neighbourhood structure yields interesting results.

$$I_b(X) = \sum_{i=1}^n P_b(X)^2 / \sum_{i=1}^n \sum_{j=1}^n m_{i,j} P_b(X_i - X_j)^2$$

Figure 4. AAM vs PCA shifting Gaussian recovery

s(t) is a univariate function and thus its estimation does not suffer from the curse of dimensionality.

Supervised Auto-Associative Models

Since the aim of dimension reduction is to simplify the regression from $X \in G$ to $Y \in S$, we can use the information in *S* to **supervise** the dimension reduction.

We use a contiguity matrix $M_S = (m_{i,i})$ whose value is 1 when Y_i is the nearest neighbour of Y_i and 0 otherwise. This projection criterion tries to project the isolign of $f(\cdot)$ on a point. This makes the regression from C to S straightforward.

SIR vs SAAM

The matrix $M = (m_{i,i})$ is a first order contiguity matrix whose value is 1 when X_i is the nearest neighbor of X_i , and 0 otherwise.

Figure 3. AAM vs PCA projection criterion

Figure 5. SIR against SAAM

SIR : Apply PCA on the barycenter of grouped data. SAAM : Minimize the projected distance in G from the nearest neighbour in S.

Take home message

AAM and SAAM exploit different ideas :

- an "inversible" projection
- a non linear recovery function
- a topological thinking of dimension reduction