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Class of the problem

Figure 1. Class of problems

We study the relation f(+) between G and
S. G is a k-manifold with kK << p. The

objective is to build a map between G and

C in order to perform a dimension
reduction.
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Figure 2. Shifting mean Gaussians example

Motivation

A machine learning

— frugal when possible

— robust

— rooted in physics

— interpretable and theoretically grounded
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Auto-Associative Modaels

Auto-Associative Models are thought of as a non-linear PCA.
These methods are dedicated to the approximation of the 0.75
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0.50 - / \\
The algorithm is the following. For 1 = 1,..., k : 0.00 . > X LA\

dataset by a manifold.

Step 1: Find direction

- Find a direction b;
optimizing a given

criterion I (X —1)).

Step 3: Recover

— Estimate the recovery

A non-linear recovery function

Auto-Associative Models
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Step 2: Project

— Compute
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Step 4: lterate |

— Compute the residual and
restart. X)) =
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Figure 4. AAM vs PCA shifting Gaussian recovery

function : s;(t) =

) ) Supervised Auto-Associative Models
E(X(-D|Cl) = t).

X(i_l) —S;0 Pbi(X(i_l))

Since the aim of dimension reduction is to simplify the

regression from X € G to Y € S, we can use the information
in S to supervise the dimension reduction.

We use a contiguity matrix Ms = (m; ;) whose value is 1

A powerfull projection criterion when Y/ is the nearest neighbour of Y; and 0 otherwise. This

The use of a criterion preserving the first-order neighbourhood projection criterion tries to project the isolign of f(-) on a

structure yields interesting results point. This makes the regression from C to S straightforward.

SIR vs SAAM
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The matrix M = (m; j) is a first order contiguity matrix
whose value is 1 when X is the nearest neigbor of X;, and 0
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Figure 5. SIR against SAAM

SIR : Apply PCA on the barycenter of grouped data.

" — — i SAAI\/I : I\/I.inimize the projected distance in G from the nearest
| neighbour in S.
y o % i Take home message
x | AAM and SAAM exploit different ideas :

Figure 3. AAM vs PCA projection criterion




