Robust Adaptation of the Train Speed for Energy Saving under Punctuality and Security Constraints

Nespoulous J.¹,², Soize C.¹, Funfschilling C.², and Perrin G.³

¹ Université Gustave Eiffel, MSME UMR 8208, 5 Bd Descartes, 77454 Marne-La-Vallée, France
² SNCF, Direction Technologies, Innovation et Projets Groupe, 1-3 Av Françoise Mitterrand, 93574 Saint-Denis, France
³ Université Gustave Eiffel, COSYS, 5 Bd Descartes, 77454 Marne-La-Vallée, France

Objective of the study

Find deterministic driver’s command u^\ast for a given entry \mathcal{E}, minimizing the energy consumed F^E in a specific domain \mathcal{D} (respecting security, punctuality, and comfort constraints), robust to uncertainties X. It aims to help drivers and prepare the development of autonomous trains.

$$u^\ast(\mathcal{E}) = \arg\min_{u \in \mathcal{D}} \mathbb{E}_X[F^E(u, X, \mathcal{E})]$$

Models for High-Speed Trains

- Entry \mathcal{E}: Wind and track descriptions.
- Driver’s command u: Time-dependent in $[-1, 1]$.
- Longitudinal dynamics for the whole train:

 $$M_T k' y(t) = \sum_{i=1}^r F^a(u(t), X, \mathcal{E})$$

 with M_T the mass of the train, k' a factor including the wheels rotation, Y the train acceleration. F^a regroups traction and braking forces, the Davis or resistant force, a corrective force in curve, and the weight.

- Energy consumed by the train:

 $$F^E(u, X, \mathcal{E}) = \int_{t_i}^{t_f} F^E(u(t), X, \mathcal{E}) \, dt,$$

 where F^E is the electric power and t_i, t_f are the initial and arrival time.

Modeling the Uncertainties

- Sensitivity analysis on the uncertain parameters X.
- 4 dynamic and 5 energy consumption parameters.
- Prior distribution: Describe the available information.
- Likelihood function: Quantify the plausibility of a simulation with measurements on commercial trains.
- Markov Chain Monte Carlo (MCMC): Metropolis-within-Gibbs to reach the posterior distribution.

First optimization method

- Idea: Find a family (u_k^\ast) that minimizes the energy consumed in specific configurations x_k drawn in X.
- Cost function F^E: Minimize the energy consumed.
- Constraints \mathcal{E}: Security, punctuality, and comfort.
- Method: Discretization, penalization with augmented Lagrangian, and CMA-ES iterative algorithm.

$$u_k^\ast(\mathcal{E}, x_k) = \arg\min_{u \in \mathcal{E}} F^E(u, x_k, \mathcal{E})$$

Second optimization method

- Idea: Find a deterministic u^\ast easy to transform to be robust to the fluctuations of X.
- Cost function: Minimize the mean of the energy.
- Constraints: Transform u^\ast as $\tilde{u}^\ast(x_k)$ to be robust to X.
- Method: Two discretizations, Principal Component Analysis, and CMA-ES iterative algorithm.

$$u^\ast = \arg\min_{u \in \mathcal{E}} \frac{1}{K} \sum_{k=1}^K F^E(\tilde{u}(x_k), x_k, \mathcal{E}).$$

References