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Steady lid-driven cavity flow

Consider an incompressible fluid in a
two-dimensional square cavity, that
is evenly pushed in one direction
at the lid. The described problem
is a well-known benchmark prob-
lem in fluid dynamics and it is mod-
eled with the Navier-Stokes equa-
tions (NSE). We consider an equiv-
alent formulation of the NSE, called
vorticity-streamfunction formula-
tion.
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Figure 1: Lid-driven cavity flow.

Vorticity-streamfunction formulation of the NSE
Let v⃗ : R2 × [0,T ] → R be a differentiable flow velocity of an
incompressible fluid. The vorticity ω : R2 × [0,T ] → R is defined as the
curl of the flow velocity, ω = ∇× v⃗ , and the streamfunction
ψ : R2 × [0,T ] → R is a function satisfying the following equations:

v⃗1 =
∂ψ

∂x2
, v⃗2 = − ∂ψ

∂x1
.

The vorticity-streamfunction formulation of the Navier-Stokes equations
reads:

−∆ψ = ω,

∂ω

∂t
−∆ω = Re

(
∂ψ

∂x1

∂ω

∂x2
− ∂ψ

∂x2

∂ω

∂x1

)
,

where Re denotes the Reynolds number.

Problem setup
We impose no-slip conditions on the impenetrable walls of the cavity
and obtain the following boundary conditions:

ψ = 0, ∂n⃗ ψ = 0
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Figure 2: Boundary conditions of lid-driven cavity flow.

Stochastic lid-driven cavity flow

Let the driving velocity U be of stochastic nature, namely U ∼ U([0.25,5]).
A solution to the stochastic problem is understood in the sense of Foiaş-
Prodi.

Figure 3: Streamfunction contours for different driving velocities.

Supervised deep learning approach

In a stochastic setup like this, it is crucial to have access to many pathwise
samples of the experiment in order to quantify uncertainties, and to gain
a better understanding of the underlying stochastic nature. Solving the
lid-driven cavity flow with classical methods is of immense computational
expense → machine learning assisted approach.
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Figure 4: Architecture of StreamNet

0 The neural network takes a driving velocity U as input, and
produces an approximated streamfunction on a n × n grid as
output.

0 The network is trained on data sets of different sizes, containing
k ∈ {10,25,50,100,250,500} in [0.25,5] equidistant points,
representing driving velocities with corresponding streamfunctions
produced by a FD-solver.

0 StreamNet is used for computationally fast Monte Carlo estimates.
0 The neural network is able to reliably predict streamfunctions for

unseen data exceeding the domain of the training data
(U = 5 → U = 7.5, MSE ∼ 10−4).

0 StreamNet captures the secondary vortices quite well, even though
they are represented by very small streamfunction values.

Figure 5: Streamfunction values of secondary vortices.

# training points MSE MAE MaxAE
500 9.39 · 10−8 1.96 · 10−4 1.74 · 10−3

250 1.02 · 10−7 2.03 · 10−4 1.49 · 10−3

100 1.30 · 10−7 2.40 · 10−4 1.60 · 10−3

50 1.55 · 10−7 2.81 · 10−4 1.77 · 10−3

25 4.38 · 10−7 4.72 · 10−4 2.58 · 10−3

10 2.74 · 10−6 1.16 · 10−3 5.41 · 10−3

Benchmark:
untrained network 0.029 0.114 0.361

Table 1: Error metrics for StreamNet evaluated on 500 data points.
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