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Inspired by work from both SA [3] and XAI [1] fields, a novel perturbation
scheme of black-box models’ input distributions is proposed. It is based on
probability measure projections under quantile constraints with respect to
(w.r.t.) the 2-Wasserstein distance. These perturbations aim to be generic,
interpretable, and suitable for both SA and XAI purposes.

Marginal distribution perturbation

Let f be a black-box model, and X ∼ P ∈ P(R). The optimally perturbed
distribution of P is

Q = argmin
G∈P(R)

D(P,G)

s.t. G ∈ C.
(1)

where D is a discrepancy between probability measures, and C ⊆ P(R) is
a perturbation class. P can be an empirical measure from an observed
dataset, or admit a positive density. Marginal perturbations are applied
using a copula invariant perturbation map

T = (F←Q ◦ FP )

where FP is the cdf of P and F←Q the generalized quantile function of Q
defined, for a ∈ [0, 1], as

F←Q (a) = sup {t ∈ R | FQ(t) < a}

Main objectives

1. Define a perturbation class Q using quantile constraints.

2. Solve Eq. 1 with the 2-Wasserstein distance as a discrepancy.

3. Explore the behavior of f subject to marginal perturbations.

Quantile constraints

Quantile constraints are of the form, given a perturbed quantile value b ∈ R
F←Q (α) ≥ b ≥ F←Q (α+) =: F→Q (α).

Let V be part of F←, the space of left-continuous, non-decreasing functions
on [0, 1]. The quantile perturbation class is defined, for i = 1 . . . , K as

QV =
{
Q ∈ P(R) | F←Q ∈ V , F←Q (αi) ≥ bi ≥ F→Q (αi)

}
.

Different types of perturbations can be defined:

• Perturbations driven by an intensity parameter θ (quantile shift, operat-
ing domain dilatation).

• Perturbations for modelling purposes (e.g., expert knowledge).

Quantile-constrained Wasserstein projections

The problem in Eq. 1, can be equivalently written as a projection in L2([0, 1]):

H = argmin
L∈L2([0,1])

∫ 1

0

(L(x)− F→P (x))2

s.t. L(αi) ≤ bi ≤ L(α+
i ), i = 1, . . . , K,

L ∈ V
• V = F←: analytical solution.
• V = monotone piece-wise continuous polynomials: convex problem.
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Figure 1: Quantile shifting perturbations. Analytical solution when V = F← (left), and
perturbation using isotonic polynomials of degree 9 (right).

Acoustic fire extinguisher

15390 experiments of sound wave fire extinguishing. Classification task on 6
variables measured during the experiments.

Black-box model: 1-layer neural network [2] trained with an accuracy of
95.15% (validation accuracy of 94.26%).

Perturbation scheme: shift of the Airflow 0.8-quantile: initial value at 12,
shift between 9.5 (θ = −1) and 14.5 (θ = 1) by polynomial perturbation
approximation of degree 9 (see, Fig. 1).

−1.0 −0.5 0.0 0.5 1.0
47

.8
5

47
.9

5
48

.0
5

48
.1

5

θ

P
ro

po
rt

io
n 

of
 p

re
di

ct
ed

 1
s 

(%
)

Perturbed Airflow
Initial Data

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
10

0.
20

0.
30

θ

P
ro

po
rt

io
n 

of
 p

re
di

ct
io

n 
sh

ift
 (

%
)

In
iti

al
 T

ar
ge

t S
ha

pl
ey

 E
ffe

ct
s

0.
00

0.
10

0.
20

0.
30

Ta
nk

Si
ze

Fu
el

D
is

ta
nc

e

D
ec

ib
el

Ai
rfl

ow

Fr
eq

ue
nc

y

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
10

0.
20

0.
30

θ

P
er

tu
rb

ed
 T

ar
ge

t S
ha

pl
ey

 E
ffe

ct
s

Figure 2: Global metrics under airflow quantile perturbations. Top row are the propor-
tion of predicted put-out fire and prediction changes w.r.t. the initial data. Bottom row is
the sensitivity of target Shapley importance metrics w.r.t. the perturbations.
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Figure 3: Signed airflow perturbation magnitude of instances inducing either a prediction
shift, or no prediction change.

Conclusion and perspectives
Generic, interpretable and easy to compute perturbation scheme, leading to
robustness to input perturbation diagnostics for SA and ML black-box models.

Future work:

• Parallel and efficient implementation in R (soon).

• Polynomial optimal degree-selection scheme and isotonic splines.

• Multivariate (copula) perturbations, and other discrepancies (Prokhorov).

• Other general smoothing spaces V (Sobolev, RKHS).

• Super-quantile perturbations.
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