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Introduction and problem formulation

�Many functions of interest describe physical quantities. Often, they are partially known, e.g. through sensor measurements.

� Such quantities are constrained by physical laws which often take the form of Partial Differential Equations (PDEs).

=⇒ Adopt a Bayesian approach, e.g. Kriging in the spirit of [1], which combines field data (sensors) and a functional prior that is constrained by such physical laws.

=⇒ Need to build a theory for PDE-constrained random fields compatible with the standard tools of PDE theory.

The tools : PDEs and random fields

�Consider an open set D ⊂ Rd and a linear homogeneous PDE

L(u)(x) :=
∑
|α|≤n

aα(x)∂
αu(x) = 0, x ∈ D (1)

For α = (α1, ..., αd)
T ∈ Nd, we used the notations |α| = α1 + ... + αd and ∂α = (∂x1)

α1...(∂xd)
αd.

�Let U = (U(x))x∈D be a random field (RF). A sample path of U is a deterministic function Uω : x 7→ U(x)(ω).

�When a function u is unknown, it can be modelled as a sample path of U ; U then defines a prior over u.

Modelling consequence : if u is a solution to equation (1), the prior U should have all its sample paths verify L(Uω) = 0.
Fig. 1: Sample paths of a GP with k(x, x′) = s2 exp
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What does L(u) = 0 really mean?

�Functions that verify equation (1) pointwise, i.e. for all x ∈ D, are strong solutions.

� In some cases, this requirement is too strong. One relaxes (1) by requiring it to be
verified only when locally averaged:

∀φ ∈ C∞
c (D), 0 =

∫
D
φ(x)L(u)(x)dx =

∑
|α|≤n

∫
D
φ(x)aα(x)∂

αu(x)dx (2)

For each term, perform |α| successive integrations by parts :

∀φ ∈ C∞
c (D),

∫
D
u(x)

∑
|α|≤n

(−1)|α|∂α(aαφ)(x)dx = 0 (3)

One only needs u to be locally integrable (
∫
K |u| < +∞ if K ⊂ D is compact) to make

sense of equation (3); if u verifies (3), it is a distributional solution of equation (1).

A PDE with non-smooth solutions: the wave equation

Note ∆ = ∂2
xx + ∂2

yy + ∂2
zz. Consider the following Cauchy problem in 3D:{

□u =
(
∂2
tt − c2∆

)
u = 0 x ∈ R3, t > 0

u(x, 0) = u0(x) and (∂tu)(x, 0) = v0(x) x ∈ R3
(4)

Its distributional solution u is

u(x, t) = (Ft ∗ v0)(x) + (Ḟt ∗ u0)(x) (5)

=

∫
S(0,1)

tv0(x− c|t|γ) + u0(x− c|t|γ)− c|t|γ · ∇u0(x− c|t|γ)dΩ
4π

(6)

Distributional PDE-constrained random fields

�Let U be a centeredmeasurable second order RF whose covariance function k(x, x′) =

E[U(x)U(x′)] is such that σ : x 7→ k(x, x)1/2 is locally integrable. We show that [2]

P({ω ∈ Ω : L(Uω) = 0 in the distributional sense}) = 1

⇐⇒ ∀x ∈ D, L(k(x, ·)) = 0 in the distributional sense
(7)

This extends a result from [3], where U is a Gaussian process (GP) and ”distributional”
is replaced by ”strong”. See also [4] for similar results in the stationary case.

�Consequences for Kriging: suppose that U ∼ GP (0, k) verifies the r.h.s. of (7) and
define V (x) = (U(x)|U(xi) = ui ∀i) ∼ GP (m̃, k̃). Then m̃, k̃(x, ·) and the sample
paths of V also verify the PDE in the distributional sense.

Gaussian processes for the wave equation

� Suppose that u0 and v0 are sample paths of two independent GPs U0 ∼ GP (0, k0u)
and V0 ∼ GP (0, k0v). Then we show that ([2]) u in equation (5) is a sample path of a
centered GP whose covariance kernel is

k((x, t), (x′, t′)) = [(Ft ⊗ Ft′) ∗ k0v](x, x′) + [(Ḟt ⊗ Ḟt′) ∗ k0u](x, x′) (8)

�This kernel verifies □k((x, t), ·) = 0 for a fixed (x, t). It can then be used for physics-
informed Kriging on partially observed solutions of (4).

Physics-informed Kriging for the wave equation

�Aim: consider u a solution of (4). Given a database B = {u(xi, tj)}i,j of values of u, reconstruct its initial conditions u0 and v0.

�Physics-informed Kriging: perform Kriging on B using kernel (8). Let m̃(x, t) be the resulting Kriging mean, then m̃(·,0) and ∂tm̃(·,0) are approximations of u0 and v0.
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Fig. 2: Comparison of u0 and m̃(·, 0) on a slice z = Cst
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Fig. 3: Comparison of v0 and ∂tm̃(·, 0) on a slice z = Cst

�DOE and Kriging model : for B, we use 30 sensors scattered in [0, 1]3 acquiring values of u at a frequency of 50Hz during 1.5 s. We impose radial symmetry and compact support around
unknown points xu0 and xv0 in the covariance structures of U0 and V0. The physical parameters (c, xu0 , x

v
0, source sizes) are estimated through log-marginal likelihood maximization.

Conclusion and acknowledgements

�We provided a characterization of distributional PDE constrained RFs.

�Kriging for the wave equation: we performed initial condition reconstruction and physical
parameter estimation.

Perspectives:

�Replace ”distributional” by ”weak” in equation (7).

�Tackle nonlinear PDEs.

We gratefully thank the SHOM and Rémy Baraille in particular for funding this work.
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