PHYSICS-INFORMED RANDOM FIELDS. APPLICATION TO KRIGING
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Introduction and problem formulation

e Many functions of interest describe physical quantities. Often, they are partially known, e.g. through sensor measurements.

e Such quantities are constrained by physical laws which often take the form of Partial Differential Equations (PDEs).
—> Adopt a Bayesian approach, e.g. Kriging in the spirit of [1], which combines field data (sensors) and a functional prior that is constrained by such physical laws.
— Need to build a theory for PDE-constrained random fields compatible with the standard tools of PDE theory.

The tools : PDEs and random fields

e Consider an open set D C R? and a linear homogeneous PDE

L(u)(z) = Y ao(x)0u(z) =0, x €D (1)

al<n
For a = (v, ..., og)! € N we used the notations |a| = oy + ... + g and 0% = (0,,)™...(0,,)". 0 ‘)U/\
e Let U = (U(x))zep be a random field (RF). A sample path of U is a deterministic function U, :  — U(x)(w).

e When a function w is unknown, it can be modelled as a sample path of U; U then defines a prior over u.

_1‘ \ \ \ |
0 0.25 0.5 0.75 1

Modelling consequence : if u is a solution to equation ([l]), the prior U should have all its sample paths verify L(U,) = 0.
Fig. 1: Sample paths of a GP with k(z,2') = s*exp ( — g5]a — 2/|?)

What does L(u) = 0 really mean? Distributional PDE-constrained random fields

e Functions that verify equation (1)) pointwise, i.e. for all z € D, are strong solutions. e Let U be a centered measurable second order RF whose covariance function k(z, ') =

: 1/9 . .
e [n some cases, this requirement is too strong. One relaxes (1)) by requiring it to be E[U(z)U(z')] is such that o : x — k(z, z) s locally integrable. We show that [2]
verified only when locally averaged:

Vo € CX(D), 0 = / o(x)L(w)(x)dz = Z / (1) (x)0%u(z)dx (2) P{w € Q: L(U,) = 0 in the distributional sense}) = 1 7)
D al<n D <= Vx € D, L(k(x,-)) = 0 in the distributional sense

For each term, perform |a successive integrations by parts :

This extends a result from [3], where U is a Gaussian process (GP) and "distributional”

Vo € C°(D), / u(x) Z (—D)0%(ane)(z)dz = 0 (3) is replaced by "strong”. See also [4] for similar results in the stationary case.

2 la|<n

o Consequences for Kriging: suppose that U ~ GP(0, k) verifies the r.h.s. of (7)) and

One only needs u to be locally integrable ( [, |u| < 400 if K C D is compact) to make define V(z) = (U(x)|U(x;) = u; Vi) ~ GP(m, k). Then m, k(zx,-) and the sample
sense of equation (3)); if u verifies (3), it is a distributional solution of equation (|1)). paths of V" also verity the PDE in the distributional sense.

A PDE with non-smooth solutions: the wave equation Gaussian processes for the wave equation

Note A = 07, + ag?y +02,. Consider the following Cauchy problem in 3D: e Suppose that ug and vy are sample paths of two independent GPs Uy ~ GP(0, kV)
{ u= (0% — AA)u =0 TR t> 0 and Vy ~ GP(0,k)). Then we show that ([2]) u in equation () is a sample path of a
o it o )

(z,0) (z) and (Ou)(x,0) () c R centered GP whose covariance kernel is
u(xr,V) = uplr) an u)(x,0) = vpla T

[ts distributional solution w is k((z,t), (2, 1) = [(F, @ Fy) * k(z, 2') + [(F} @ Fy) = kY)(z, 2) (8)

u(z,t) = (Fy % vo)(z) + (F} * ug)(x)
dl) e This kernel verifies Lk ((x,t), ) = 0 for a fixed (x,t). It can then be used for physics-
= tuo(z — clt|y) + uo(x — c|t]y) — clt]y - Vuo(z — c|t|y)— 1), »
/5@71) wl@ = cltly) +uole = cltly) = cfthy - Vaole = efty) A informed Kriging on partially observed solutions of (4)).

Physics-informed Kriging for the wave equation

e Aim: consider u a solution of (4). Given a database B = {u(w;,t;)}, ; of values of u, reconstruct its initial conditions uo and vp.

e Physics-informed Kriging: perform Kriging on B using kernel (8). Let m(x,t) be the resulting Kriging mean, then m(-,0) and d;m(-,0) are approximations of uy and vy.
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Fig. 2: Comparison of ug and m(-,0) on a slice z = C'st Fig. 3: Comparison of vy and dym(-,0) on a slice z = Cst

¢ DOE and Kriging model : for B, we use 30 sensors scattered in [0, 1]° acquiring values of u at a frequency of 50H z during 1.5 s. We impose radial symmetry and compact support around
unknown points xf and x{ in the covariance structures of Uy and V{. The physical parameters (c, 2, 2§, source sizes) are estimated through log-marginal likelihood maximization.
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