<u>Statistical methods for the study of computer experiments</u> <u>failures: Application to a fuel-coolant interaction simulation code</u>

DE LA RECHERCHE À L'INDUSTRIE

<u>CSS</u>

<u>F. Hakimi^{1,2}, C. Brayer², A. Marrel^{1,3}, F. Gamboa¹, B. Habert²</u>

e-mail : faouzi.hakimi@cea.fr

¹UT3, Université Paul Sabatier, Toulouse, France ²CEA, DES, IRESNE, DTN, Cadarache F-13108 Saint-Paul-Lez-Durance, France ³CEA,DES, IRESNE, DER, Cadarache F-13108 Saint-Paul-Lez-Durance, France

Context and objectives

- Understanding a code behavior can be achieved by exploring the range of variation of the uncertain inputs. Monte-Carlo methods are useful to do so: the inputs space is randomly sampled and a code run is performed on each sampled point. However, some of these code runs may fail to converge. This can be due to numerical problems or suitability of the models.
- Goal of this work: analyse the sampled data to understand which of the inputs have the most influence on code failures.
- Failure occurrence can be considered as a binary output Z. Hence, we consider the
- The code under study is MC3D. It computes the fuel-coolant interaction for nuclear severe accident simulations.

- d = 50 inputs are considered. These inputs are uniformly distributed around their nominal value. They are denoted $X = \{X_1, ..., X_d\}$
- The binary output *Z* is defined as:

analysis of code failures in the general context of **sensitivity analysis**.

- Two methods are proposed to perform this particular **sensitivity analysis** [3]:
 - Goodness-of-fit tests that compare the initial probability distribution of each input with its conditional probability distribution knowing the code failures;
 - Measures of the global dependence between each input and the occurrence of code failures using the Hilbert Schmidt Independence Criterion and associated independence test.

Method 1:

Kolmogorov goodness-of fit test

- If an input has no direct effect on code failures, then the subset such that the code fails (Z = 1) is independent of the values taken by this input.
 - → Samplings such as the code fail follow the same distributions as the initial ones (known).
- We compare these two distributions. If they are different
 → The input has a significant impact on code failure.

 $\mathbf{Z} = \begin{cases} 1 & \text{if the code fails to converge} \\ 0 & \text{otherwise.} \end{cases}$

To explore the range of variation of these inputs, **2000 runs** have been performed. The samples have been obtained using a space-filling sampling **method**: Latin Hypercube Sampling (LHS) [4]. It improves the distribution of the design 1D-sub-projections \rightarrow good regarding the high input space dimension. Among these code runs, n = 700 failed to converge.

Results

We apply the **tests** associated with the **K-S and HSIC statistics** on this data set. The following table gives the **selected inputs** regarding this two tests, at level 0.1.

input	p-value KS test	p-value HSIC tes
X_{32}	0.000	0.000
X_9	0.004	0.001
X_{37}	0.006	0.021
X_4	0.007	0.038
X_1	0.016	0.012
X_{45}	0.017	0.024
X_{39}	0.020	0.001
X_{36}	0.025	0.032
X_{42}	0.036	0.047
X_{50}	0.047	0.12
X_{10}	0.051	0.052
X_{34}	0.064	0.015
X_{24}	0.075	0.234

• Kolmogorov-Smirnov (K-S) independence test is used to conduct this comparison [1]. The test statistic S_n^{KS} is defined by:

$$S_n^{KS}=n^{1/2}{
m sup}|F_n-F_0|$$

• Here, F_n is the empirical distribution function tested. F_0 is the known cumulative distribution used for comparison.

Method 2:

Measure of the global independence (HSIC)

 Main idea: measure the dependence between each input and the code failure output Z. We use the Hilbert Schmidt Independence criterion to process this measure [2]. **The estimated density** of the normalized marginal samples detected as failed are compared to the **initial uniform densities**.

→ Paves the way for a physical interpretation of input influence on code failures[3].

Two feature maps $\phi \setminus \psi$ (with a Reproducing kernel Hilbert space and a kernel) are associated to X_i and Z respectively. It allows to write the generalized covariance operator as the tensor product of these centered features maps:

$$C_{X_i,Z} = \mathbb{E}[(\phi - \mathbb{E}_{X_i}(\phi)) \otimes (\psi - \mathbb{E}_Z(\psi))]$$

Finally, the HSIC corresponds to the square norm of this operator:

 $HSIC(X_i, Z) = ||C_{X_i, Z}||^2$

Interesting property: under some conditions (characteristic kernels), if HSIC(Xi,Z) = 0, then Xi and Z are independent. An asymptotic test is built around this criterion using this property [2].

References:

[1] William J. Conover. *Practical Nonparametric Statistics*. New York: John Wiley & Sons, 1975.

[2] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. *Measuring Statistical Dependence with Hilbert-Schmidt Norms*. Algorithmic Learning Theory 3734, pages 63–77, 2005.

[3] F. Hakimi, C. Brayer, A. Marrel, F. Gamboa and B. Habert. *Statistical methods for the study of computer experiments failures: Application to a fuel-coolant interaction simulation code*. Submitted to Nuclear science and engineering, 2022.

[4] M. Mckay, R. Beckman, W. Conover. A comparison of three methods for selecting vales of input variables in the analysis of output from a computer code. Technometrics 2, pages 239–245, 1979.