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Context and objectives

 Understanding a code behavior can be achieved by exploring the range of variation of the
uncertain inputs. Monte-Carlo methods are useful to do so: the inputs space is randomly
sampled and a code run is performed on each sampled point. However, some of these
code runs may fail to converge. This can be due to numerical problems or suitability of the
models.

 Goal of this work: analyse the sampled data to understand which of the inputs have the
most influence on code failures.

 Failure occurrence can be considered as a binary output Z. Hence, we consider the
analysis of code failures in the general context of sensitivity analysis.

 Two methods are proposed to perform this particular sensitivity analysis [3]:
 Goodness-of-fit tests that compare the initial probability distribution of each

input with its conditional probability distribution knowing the code failures;
 Measures of the global dependence between each input and the occurrence

of code failures using the Hilbert Schmidt Independence Criterion and
associated independence test.

Method 1:
Kolmogorov goodness-of fit test

Results
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Method 2:
Measure of the global independence 

(HSIC)

 If an input has no direct effect on code failures, then the
subset such that the code fails (Z = 1) is independent of the
values taken by this input.

 Samplings such as the code fail follow the
same distributions as the initial ones (known).

 We compare these two distributions. If they are different
 The input has a significant impact on code failure.

 Kolmogorov-Smirnov (K-S) independence test is used to
conduct this comparison [1]. The test statistic is defined
by:

 Here, Fn is the empirical distribution function tested. F is the
known cumulative distribution used for comparison.

 Main idea: measure the dependence between each input and
the code failure output Z. We use the Hilbert Schmidt
Independence criterion to process this measure [2].

 Two feature maps (with a Reproducing kernel Hilbert
space and a kernel) are associated to Xi and Z respectively. It
allows to write the generalized covariance operator as the
tensor product of these centered features maps:

 Finally, the HSIC corresponds to the square norm of this
operator:

 Interesting property: under some conditions (characteristic
kernels), if HSIC(Xi,Z) = 0, then Xi and Z are independent. An
asymptotic test is built around this criterion using this
property [2].

We apply the tests associated with the K-S and HSIC statistics on this data set. The
following table gives the selected inputs regarding this two tests, at level 0.1.

The estimated density of the normalized marginal samples detected as failed are
compared to the initial uniform densities.
 Paves the way for a physical interpretation of input influence on code
failures[3].

References:
[1] William J. Conover. Practical Nonparametric Statistics. New York: John Wiley & Sons, 1975.
[2] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring Statistical Dependence with Hilbert-Schmidt Norms. Algorithmic
Learning Theory 3734, pages 63–77, 2005.
[3] F. Hakimi, C. Brayer, A. Marrel, F. Gamboa and B. Habert. Statistical methods for the study of computer experiments failures:
Application to a fuel-coolant interaction simulation code. Submitted to Nuclear science and engineering, 2022.
[4] M. Mckay, R. Beckman, W. Conover. A comparison of three methods for selecting vales of input variables in the analysis of output
from a computer code. Technometrics 2, pages 239–245, 1979.

 The code under study is MC3D. It
computes the fuel-coolant
interaction for nuclear severe
accident simulations.

 d = 50 inputs are considered. These inputs are uniformly distributed
around their nominal value. They are denoted

 The binary output Z is defined as:

 To explore the range of variation of these inputs, 2000 runs have been
performed. The samples have been obtained using a space-filling sampling
method: Latin Hypercube Sampling (LHS) [4]. It improves the distribution of
the design 1D-sub-projections  good regarding the high input space
dimension. Among these code runs, n = 700 failed to converge.


