Elfzurich

MULTIFIDELITY SURROGATE MODELLING WITH NOISY GREY-BOX MODELS

GLOBAL DISCREPANCY MULTIFIDELITY MODELLING

A. Giannoukou, S. Marelli, B. Sudret

ETH Zürich, Chair of Risk, Safety and Uncertainty Quantification, agiannoukou@ibk.baug.ethz.ch

MULTIFIDELITY GREY-BOX MODELLING

The project

Grey-box modelling

tiple sources:

Multifidelity grey-box setting

The output of engineering systems can often be obtained from mul- • Few and expensive experimental data: high fidelity (HF) • Expensive computational models: **low fidelity** (LF)

- Experimental data: **black-box models**
- Physics-based computational models: white-box models
- Grey-box models fuse information from white and black boxes
- Goal: Sustain the transition of European personal mobility towards safe and reliable systems
- Idea: Data from vehicle sensors + computational models of components and systems \rightarrow grey-box model

Goal: Combine information of multiple fidelities from blackand white-box models into a multifidelity grey-box model

DETERMINISTIC GLOBAL DISCREPANCY MULTIFIDELITY MODELLING

Problem setup:

- HF experimental data: N_H input data $\mathcal{X}_H = (\mathbf{x}_H^{(1)}, ..., \mathbf{x}_H^{(N_H)})$ with responses $\mathcal{Y}_{H} = (y_{H}^{(1)}, ..., y_{H}^{(N_{H})})$
- A LF computational model \mathcal{M}_L , and N_L LF model input data $\mathcal{X}_L = (\mathbf{x}_L^{(1)}, ..., \mathbf{x}_L^{(N_L)})$ with model evaluations $\mathcal{Y}_L = (y_L^{(1)}, ..., y_L^{(N_L)})$

Assumption: The HF response can in general be expressed as follows:

$$y_H$$
 = $ho(oldsymbol{x}) \cdot y_L$ + $\delta(oldsymbol{x})$

(1)

An additive correction (AC) approach

The method shown below is based on Berchier 2016; Ng, Eldred 2012. It assumes that $\rho(\boldsymbol{x}) = 1$ in (1), so $y_H = y_L + \delta(\boldsymbol{x})$

TOY EXAMPLE: BOREHOLE FUNCTION

Description of the example • High-fidelity model: $f_H(x) = \frac{2\pi T_u (H_u - H_l)}{\ln (r/r_w) (1 + \frac{2LT_u}{\ln (r/r_w) r_w^2 K_w} + \frac{T_u}{T_l})}$ • Low-fidelity version: $5T_{u}(H_{u} - H_{l})$

$$f_L(x) = \frac{5T_u(T_u - T_l)}{\ln(r/r_w)(1.5 + \frac{2LT_u}{\ln(r/r_w)r_w^2K_w} + \frac{T_u}{T_l})}$$

Data generation

• Surrogate for LF and MF: polynomial chaos expansions (PCE)

Variable	e Distribution
r_w	$\mathcal{N}(\mu = 0.10, \sigma = 0.0161812)$
r	$\mathcal{LN}(\mu = 7.71, \sigma = 1.0056)$
T_u	$\mathcal{U}(63070, 115600)$
H_u	$\mathcal{U}(990, 1110)$
T_l	$\mathcal{U}(63.1, 116)$
H_l	$\mathcal{U}(700, 820)$
L	$\mathcal{U}(1120, 1680)$
K_{m}	$\mathcal{U}(9855, 12045)$

Results

MULTIFIDELITY MODELLING WITH NOISY DATA

• Real-world data are contaminated by **measurement noise** \rightarrow the HF unknown model can be written as: $\mathcal{M}_H: X \to Y$, where $y_H^{(i)} = \mathcal{M}_H(x_H^{(i)}) + \varepsilon_H$, and ε_H is random noise with $\mathbb{E}[\varepsilon_H] = 0$

- HF experimental design (ED) sizes: 5, 10, 15, 20, 25, 50, 75, 100
- LF ED size (constant): 200
- HF ED not a subset of LF ED
- MF uses the HF and the LF samples
- Number of replications per HF ED size: 100
- Validation set size: $N_v = 10^5$ unseen data points

Relative estimation error on the mean, given by $\epsilon_{\mu} = \left| \frac{\mu - \mu}{\mu} \right|$ where $\tilde{\mu}$ is the mean value of the surrogate model and μ is the true model mean

Relative estimation error on the variance, given by $\epsilon_{\sigma^2} = \left| \frac{\tilde{\sigma}^2 - \sigma^2}{\sigma^2} \right|$ where $\tilde{\sigma}^2$ is the variance of the surrogate model and σ^2 is the true model variance

• The LF physics-based model is represented by a surrogate model trained on a **finite experimental design** \rightarrow the LF response can be written as: $y_L^{(i)} = \widetilde{\mathcal{M}}_L(x_L^{(i)}) + \varepsilon_L$, where ε_L is an approximation residual

DISCUSSION AND FURTHER WORK

- The presented MF method works well for analytical toy examples, but real data have not been used yet
- Global regression-based approaches will be investigated to deal with noisy data
- Multifidelity stochastic simulators will be investigated to deal with models with an aleatoric stochastic behaviour
- We used the UQLab software for the construction of the surrogate models in the example shown

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION STEFANO-FRANSCINI-PLATZ 5 CH-8093 ZÜRICH

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 955393