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MULTIFIDELITY GREY-BOX MODELLING

The project Grey-box modelling Multifidelity grey-box setting
The output of engineering systems can often be obtained from mul- ® Few and expensive experimental data: high fidelity (HF)
tiple sources: e Expensive computational models: low fidelity (LF)
GREYDIENT * Experimental data: black-box models Goal: Combine information of multiple fidelities from black-
* Physics-based computational models: white-box models and white-box models into a multifidelity grey-box model
e Goal: Sustain the transition of Grey-box models fuse information from white and black boxes MULTIFIDELITY GREY BOX
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DETERMINISTIC GLOBAL DISCREPANCY MULTIFIDELITY MODELLING TOY EXAMPLE: BOREHOLE FUNCTION

Problem setup: Description of the example Variable Distribution
* HF experimental data: Ny input data Xy = (mg), ...,mSLINH)) with responses * High-fidelity model: T N(=0.10,0 = 0.0161812)
Vi = ( (1) (A&ﬂ) 2Ty (Hy — Hp) r LN (p=7.71,0 =1.0056)
o= Tr(w) = In (r/r)(1+ ——2LL Ty Tu U (63070, 115600)
A LF computational model M;, and N; LF model input data v n(r/ry)rafe 1 H, (990, 1110)
X = (w(Ll), e a:(LNL)) with model evaluations ), = (y,(-f) . yéNL)) * Low-fidelity version: 7]} Z Eggbl,;zlo@’))
Assumption: The HF response can in general be expressed as follows: fr(z) = TulHy _QflT) 0 L 4(1120, 1630)
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An additive correction (AC) approach Data generation Results
The method shown below is based on Berchier 2016; Ng, Eldred 2012, e Surrogate for LF and MF: polyno- o 5
It assumes that p(z) = 1in (1), 0 yr = yr, + 0(x) mial chaos expansions (PCE) ¥
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Construct LF data points is the true model mean
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MULTIFIDELITY MODELLING WITH NOISY DATA , G . . 520 9 . .
given by €, = |%| where [ is the mean given by ¢,2 = |%—| where ¢ is the vari-
. ([ ] 1 2 1
» Real-world data are contaminated by measurement noise value of the surrogate model and p is the true ance of thg surrogate model and o~ is the true
model mean model variance

~» the HF unknown deel can be. written as:

Mpyg: X - Y, where yg) = /\/lH(xg)) +ey, and ey is random noise with E[ey] =0

* The LF physics-based model is represented by a surrogate model trained on a DISCUSSION AND FURTHER WORK
finite experimental design ~ the LF response can be written as:
yg) _ ML( x(Li)) + ¢;, where ¢} is an approximation residual * The presented MF method works well for analytical toy examples, but real data

have not been used yet
The multifidelity model needs
to denoise the noisy data.

== Deterministic model

: Noise * Global regression-based approaches will be investigated to deal with noisy data

e Multifidelity stochastic simulators will be investigated to deal with models with
an aleatoric stochastic behaviour

e We used the UQLab software for the construction 7T
of the surrogate models in the example shown UQLab
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