

Uncertainty quantification and global sensitivity analysis of seismic fragility curves using kriging

<u>Clément Gauchy</u>^{a,b}, Cyril Feau^a, Josselin Garnier^b

Adaptation of the UQ framework to seismic probabilistic risk assessment

✓ Substitution of the costly mechanical computer model by a Gaussian process surrogate

✓ Uncertainty propagation on a goal-oriented quantity of interest, the seismic fragility curve
 ✓ Sensitivity analysis on parameters tainted by epistemic uncertainties to ensure information based design choices

Seismic fragility curve

- $\Psi(a, \mathbf{x}) = \mathbb{P}_{\varepsilon}(y(A, \mathbf{X}) > C | A = a, \mathbf{X} = \mathbf{x})$
- *A*: Scalar variable representing the intensity of the seismic solicitation
- X: Mechanical parameters of the structure

Kriging of computer model output
$$(G|\mathcal{D}_n) \sim \mathcal{N}(\widehat{G}_n(a, \mathbf{x}), \sigma_n(a, \mathbf{x}))$$
 $G \sim \mathcal{GP}(0, \Sigma)$ $Y(a, \mathbf{x}) = G(a, \mathbf{x}) + \varepsilon$ $G_n \sim (G|\mathcal{D}_n)$ $\mathcal{D}_n = ((a_i, \mathbf{x}_i), y(a_i, \mathbf{x}_i))_{1 \le i \le n}$ $\widehat{\sigma}_n(a, \mathbf{x})^2 = \sigma_n(a, \mathbf{x})^2 + \sigma_{\varepsilon}^2$

- *C*: Critical level above which the structure is considered in failure state
- $y(a, \mathbf{x}) = g(a, \mathbf{x}) + \varepsilon$: Stochastic computer model output

Application to a French pressurized reactor piping system

Mock up of a safety water piping system of a nuclear power plant

	A nonlinear	FE	model	is	calibrated		
using real experiments							

Variable number	Variable	Mean
1	Young modulus	$1.9236 \ 10^{11} \ Pa$
2	Elasticity limit	$300 \mathrm{MPa}$
3	Hardening module	$4.27 10^8$
4	Modal damping ratio	1%
5	Rotational stiffness for the P151 guide in Y direction	$1.1 \ 10^5 \ \rm Nm/rad$
6	Rotational stiffness for the P29 clamped end in X direction	$1.1 \ 10^5 \ \rm Nm/rad$
7	Rotational stiffness for the P29 clamped end in Y direction	$3.3 \ 10^5 \ \text{Nm/rad}$
8	Translational stiffness for the P29 clamped end in X direction	$1.0 \ 10^6 \ { m N/m}$
9	Translational stiffness for the P29 clamped end in Y direction	$2.0 \ 10^5 \ { m N/m}$
10	Translational stiffness for the P29 clamped end in Z direction	$1.0 \ 10^6 \ \text{N/m}$

- Boundary conditions are relaxed on the clamped end of the mock-up in order to match the modal characteristics of the overall piping system
- Each variable is independent and follows a uniform distribution with a 15% relative variation (maximum entropy principle)
- After a screening step (HSIC based independence test), the variables 1,2,3,8,9 and 10 are considered influential.

- Conditional sampling of the kriging surrogate to obtain confidence intervals on the sensitivity indices
- Bootstrap method to assess the pick freeze Monte Carlo uncertainty

Good predictivity of the kriging surrogate (Q² = 86 %)
 The kriging surrogate provides an uncertainty on the estimated fragility curves

Numerical results

Fragility curve kriging estimator: $\Psi^{(1)}(a, \mathbf{x}) = \Phi\left(\frac{\widehat{G}_n(a, \mathbf{x}) - \log(C)}{\widehat{\sigma}_n(a, \mathbf{x})}\right)$

Fragility curve posterior distribution:
$$\Psi^{(2)}(a, \mathbf{x}) = \Phi\left(\frac{G_n(a, \mathbf{x}) - \log(C)}{\sigma_{\varepsilon}}\right)$$

To go further: Sequential planning of experiments

CEA Saclay, D36, 91191 Gif sur Yvette, France

Centre de Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau Cedex, France

Contact: clement.gauchy@polytechnique.edu

- John Barr and Herschel Rabitz. A Generalized Kernel Method for Global Sensitivity Analysis. *SIAM/ASA Journal on Uncertainty Quantification*, 10(1):27–54, February 2022
- Bertrand Iooss and Loïc Le Gratiet. Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes. *Reliability Engineering & System Safety*, 187:58–66, July 2019
- Loic Le Gratiet, Claire Cannamela, and Bertrand Iooss. A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer Codes. SIAM/ASA Journal on Uncertainty Quantification, 2(1):336–363, January 2014.