Kernel-based quadrature applied to offshore wind turbine damage estimation

- . . ) ) ....o;o.'..
Elias Fekhari" #, Bertrand looss" 2, Vincent Chabridon’, Joseph Muré’ el ~‘~
'EDF R&D - 6 quai Watier, Chatou, France UNIVE 35‘TE ‘ ‘ e DF
°Université Nice Cote d’Azur - 28 Avenue de Valrose, Nice, France COTEDAZUR
Industrial context & Problem statement Kernel-based probabilistic integration
e EDF Renewables operates ~10 000 MW of wind turbine (WT) worldwide 1. Select integration nodes = E[¢(X)] ~ 1 Yo (X(i))

e New technologies (e.g., offshore floating WT), wind farms reaching end-of-life
— Need probabilistic tools to optimize safety margins and asset management

Chained simulation model

Candidate set: S is a fairly dense finite subset of IR? with size N > n that emulates
the target distribution (e.g., a large Sobol’ sequence, available data as in Fig.2)
Kernel herding criterion [4, 6]: at iteration n + 1, for a given design of experiments
(DoE) X,, = {xV, ..., x("1} and a given kernel k

Expensive-to-evaluate deterministic computer model [3] (distributed on a cluster):
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Fig. 1: Numerical simulation chain for WT damage assessment (simulates 10min) Optimal weights for quadrature [@] for a given DoE X,, and a given kernel k
~1
Random inputs w* = P(X;)K, (5)
e X € Dx C R?: environmental random vector with its joint distribution fx(-) with potentials P(X,) = [ k(x, xV) fx(x) d)(("). - -({)f k(x, x™) fx(x) dx|
: ) : : - ;
e Z € Dz C R%: system random vector with its joint distribution fz(-) and variance-covariance matrix {K”}i,]' = k(> x)
e The random vectors are considered mutually independent Sampling a bivariate random mixture
Uncertainty propagation 0.
Two nested quantities of interest to estimate (see [5])
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Damage Equivalent Load (DEL): expected value of the damage over the environ-
mental conditions (conditionally to a sample of system variables Z = z) = 06
E[Y|Z =2 =Eg(X,2)[Z=2] = | glx2)f(x)dx=¢(z) (2
X
Probability of threshold exceedance: for a given threshold vy, € IR | 0.2- candidate points (N — 4096)
@® Monte Carlo design (n = 20)
pf — IP (¢(Z) > yth) — / ]]'{(P(Z)>yth}fz(z) dz (3) ® kernel herding sequential design (n = 20)
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— How to efﬁciently estimate the DEL? Fig. 3: Kernel-based sampling on a bivariate random mixture (markers’ sizes indexed to the optimal weights)

— E. Fekhari et al.“Model predictivity assessment: incremental test-set selection

Environmental measured data and accuracy evaluation”. In: Preprint (2021).
— New Python package on pypi: otkerneldesign (using OpenTURNS[1])

SCADA data collected over a period of four years at the Teesside (UK) offshore wind farm

Conclusions & Perspectives
-HLI— - e Combining kernel herding with optimal weights is an efficient integration method

e This method is sensitive to the chosen kernel and its hyper-parameters
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e This method allows direct sampling from available empirical distribution

e Active learning methods might be more efficient but are harder to distribute (HPC)

— Determine influential system variables using advanced sensitivity analysis methods
— Adapt kernel-based sampling methods to reliability analysis problems

FreeTurbulence

e Candidate
e Kernel herding
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Fig. 2: Teesside wind farm environmental data (in grey, N = 10°) and a kernel herding sample (in blue, n = 520) Journal on Uncertainty Quantification 8 (2020), pp. 959-1011.

Numerical results: DEL estimation by kernel herding
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Fig. 4: Offshore wind turbine structure diagram _ .
Fig. 5: Damage radar plot at the mudline Fig. 6: Damage equivalent load estimation

Contact: name.surename @ edf.fr


https://efekhari27.github.io/otkerneldesign/master/

