Kernel-based quadrature applied to offshore wind turbine damage estimation

(1)

(3)

Elias Fekhari^{1, 2}, Bertrand Iooss^{1, 2}, Vincent Chabridon¹, Joseph Muré¹

¹EDF R&D - 6 quai Watier, Chatou, France ²Université Nice Côte d'Azur - 28 Avenue de Valrose, Nice, France

Industrial context & Problem statement

- ullet EDF Renewables operates \sim 10 000 MW of wind turbine (WT) worldwide
- New technologies (e.g., offshore floating WT), wind farms reaching end-of-life
 → Need probabilistic tools to optimize safety margins and asset management
 Chained simulation model

Expensive-to-evaluate deterministic computer model [3] (distributed on a cluster):

 $g: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}, (\mathbf{x}, \mathbf{z}) \mapsto g(\mathbf{x}, \mathbf{z})$

	TurbSim	TA7' 1 1	DIEGO	Von Micre stross	Python	
1	Turbulent wind	vvina speea field	Wind turbine	time serie	Damage	

Kernel-based probabilistic integration

1. Select integration nodes $\Rightarrow \mathbb{E}[g(\mathbf{X})] \approx \frac{1}{n} \sum_{i=1}^{n} g(\mathbf{x}^{(i)})$

Candidate set: S is a fairly dense finite subset of \mathbb{R}^d with size $N \gg n$ that emulates the target distribution (e.g., a large Sobol' sequence, available data as in Fig.2) **Kernel herding criterion [4, 6]:** at iteration n + 1, for a given design of experiments (DoE) $\mathbf{X}_n = {\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}}$, and a given kernel k

$$\mathbf{x}^{(n+1)} \in \operatorname*{arg\,min}_{\mathbf{x}\in\mathcal{S}} \left(\frac{1}{n} \sum_{i=1}^{n} k(\mathbf{x}, \mathbf{x}^{(i)}) - \frac{1}{N} \sum_{i=1}^{N} k(\mathbf{x}, \mathbf{x}'^{(j)}) \right)$$
(4)

Fig. 1: Numerical simulation chain for WT damage assessment (simulates 10min)

Random inputs

• $X \in \mathcal{D}_X \subset \mathbb{R}^p$: environmental random vector with its joint distribution $f_X(\cdot)$

• $Z \in D_Z \subset \mathbb{R}^q$: system random vector with its joint distribution $f_Z(\cdot)$

• The random vectors are considered mutually independent

Uncertainty propagation

Two nested quantities of interest to estimate (see [5])

Damage Equivalent Load (DEL): expected value of the damage over the environmental conditions (conditionally to a sample of system variables $\mathbf{Z} = \mathbf{z}$) $\mathbb{E}[Y|\mathbf{Z} = \mathbf{z}] = \mathbb{E}[g(\mathbf{X}, \mathbf{Z})|\mathbf{Z} = \mathbf{z}] = \int_{\mathcal{D}_{\mathbf{X}}} g(\mathbf{x}, \mathbf{z}) f_{\mathbf{X}}(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \boldsymbol{\phi}(\mathbf{z}) \quad (2)$

Probability of threshold exceedance: for a given threshold $y_{th} \in \mathbb{R}$ $p_{f} = \mathbb{P}\left(\phi(\mathbf{Z}) > y_{th}\right) = \int_{\mathcal{D}_{\mathbf{Z}}} \mathbb{1}_{\{\phi(\mathbf{z}) > y_{th}\}} f_{\mathbf{Z}}(\mathbf{z}) \, d\mathbf{z}$

 \hookrightarrow How to efficiently estimate the DEL?

Environmental measured data

2. Compute optimal weights for integration $\Rightarrow \mathbb{E}[g(\mathbf{X})] \approx \sum_{i=1}^{n} \mathbf{w}_{i}^{*} g(\mathbf{x}^{(i)})$

Optimal weights for quadrature [2]: for a given DoE \mathbf{X}_n and a given kernel k $\mathbf{w}^* = P(\mathbf{X}_n)\mathbf{K}_n^{-1}$ (5) with potentials $P(\mathbf{X}_n) = \left[\int k(\mathbf{x}, \mathbf{x}^{(1)})f_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x}, \dots, \int k(\mathbf{x}, \mathbf{x}^{(n)})f_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x}\right]$ and variance-covariance matrix $\{\mathbf{K}_n\}_{i,j} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$

Fig. 3: Kernel-based sampling on a bivariate random mixture (markers' sizes indexed to the optimal weights)

 \hookrightarrow E. Fekhari et al. "Model predictivity assessment: incremental test-set selection and accuracy evaluation". In: Preprint (2021).

SCADA data collected over a period of four years at the Teesside (UK) offshore wind farm

 \hookrightarrow New Python package on pypi: otkerneldesign (using OpenTURNS[1])

Conclusions & Perspectives

- Combining kernel herding with optimal weights is an efficient integration method
- This method is sensitive to the chosen kernel and its hyper-parameters
- This method allows direct sampling from available empirical distribution
- Active learning methods might be more efficient but are harder to distribute (HPC)
- \hookrightarrow Determine influential system variables using advanced sensitivity analysis methods \hookrightarrow Adapt kernel-based sampling methods to reliability analysis problems

References

[1] Michaël Baudin et al. "Title: Open TURNS: An industrial software for uncertainty quantification in simulation". In: Handbook of uncertainty quantification. 2017, pp. 1–38.

[2] F.X. Briol et al. "Probabilistic Integration: A Role in Statistical Computation?" In: Statistical Science 34.1 (2019), pp. 1–22.
 [3] M. Capaldo et al. Design brief of HIPERWIND offshore wind turbine cases: bottom fixed 10MW and floating 15MW. Tech.

rep. H2020 European project HIPERWIND, 2021.

[4] Y. Chen, M. Welling, and A. Smola. "Super-samples from kernel herding". In: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence. AUAI Press. 2010, pp. 109–116.

[5] K. Müller and P. Cheng. "Application of a Monte Carlo procedure for probabilistic fatigue design of floating offshore wind turbines". In: Wind Energy Science 3 (2018), pp. 149–162.

[6] L. Pronzato and A.A. Zhigljavsky. "Bayesian quadrature and energy minimization for space-filling design". In: SIAM/ASA Journal on Uncertainty Quantification 8 (2020), pp. 959–1011.

Numerical results: DEL estimation by kernel herding

Contact: name.surename@edf.fr