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Industrial context & Problem statement
• EDF Renewables operates∼10 000 MW of wind turbine (WT) worldwide
•New technologies (e.g., offshore floating WT), wind farms reaching end-of-life
↪→ Need probabilistic tools to optimize safety margins and asset management

Chained simulation model
Expensive-to-evaluate deterministic computer model [3] (distributed on a cluster):

g : Rp × Rq → R, (x, z) 7→ g(x, z) (1)

Fig. 1: Numerical simulation chain for WT damage assessment (simulates 10min)
Random inputs

•X ∈ DX ⊂ Rp: environmental random vector with its joint distribution fX(·)
•Z ∈ DZ ⊂ Rq: system random vector with its joint distribution fZ(·)
• The random vectors are considered mutually independent

Uncertainty propagation

Two nested quantities of interest to estimate (see [5])
Damage Equivalent Load (DEL): expected value of the damage over the environ-mental conditions (conditionally to a sample of system variables Z = z)

E[Y|Z = z] = E[g(X, Z)|Z = z] =
∫
DX

g(x, z) fX(x)dx = ϕ(z) (2)
Probability of threshold exceedance: for a given threshold yth ∈ R

pf = P (ϕ(Z) > yth) =
∫
DZ

1{ϕ(z)>yth} fZ(z)dz (3)
↪→ How to efficiently estimate the DEL?

Environmental measured data
SCADA data collected over a period of four years at the Teesside (UK) offshorewind farm

Fig. 2: Teesside wind farm environmental data (in grey, N = 105) and a kernel herding sample (in blue, n = 520)

Kernel-based probabilistic integration
1. Select integration nodes⇒ E[g(X)] ≈ 1

n ∑n
i=1 g

(
x(i)

)
Candidate set: S is a fairly dense finite subset ofRd with size N ≫ n that emulatesthe target distribution (e.g., a large Sobol’ sequence, available data as in Fig.2)
Kernel herding criterion [4, 6]: at iteration n+ 1, for a given design of experiments(DoE) Xn = {x(1), . . . , x(n)}, and a given kernel k

x(n+1) ∈ arg min
x∈S
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n
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N

∑
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2. Compute optimal weights for integration⇒ E[g(X)] ≈ ∑n
i=1 w∗

i g
(
x(i)

)
Optimal weights for quadrature [2]: for a given DoE Xn and a given kernel k

w∗ = P(Xn)K−1
n (5)

with potentials P(Xn) =
[∫

k(x, x(1)) fX(x)dx, . . . ,
∫

k(x, x(n)) fX(x)dx
]

and variance-covariance matrix {Kn}i,j = k(x(i), x(j))
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Sampling a bivariate random mixture
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Fig. 3: Kernel-based sampling on a bivariate random mixture (markers’ sizes indexed to the optimal weights)
↪→ E. Fekhari et al.“Model predictivity assessment: incremental test-set selectionand accuracy evaluation”. In: Preprint (2021).
↪→ New Python package on pypi: otkerneldesign (using OpenTURNS[1])

Conclusions & Perspectives
• Combining kernel herding with optimal weights is an efficient integration method
• This method is sensitive to the chosen kernel and its hyper-parameters
• This method allows direct sampling from available empirical distribution
•Active learning methods might be more efficient but are harder to distribute (HPC)
↪→ Determine influential system variables using advanced sensitivity analysis methods
↪→ Adapt kernel-based sampling methods to reliability analysis problems
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Numerical results: DEL estimation by kernel herding

Fig. 4: Offshore wind turbine structure diagram
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Fig. 5: Damage radar plot at the mudline
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Fig. 6: Damage equivalent load estimation

https://efekhari27.github.io/otkerneldesign/master/

