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Université Grenoble Alpes, INRIA, IFP Energies Nouvelles, École Centrale de Lyon
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Introduction to the inversion framework

Motivation: many inversion issues are present in industry [El Amri, 2019].
Goal: find all sets of parameters such that a quantity of interest remains below a threshold.
Mathematical Formulation: estimation of the following Γ? set while limiting the number of g black-box evaluations:

Γ? :=
{
x ∈ X, g(x) ≤ T

}
(1)

with X ⊂ Rd design space (compact) and T threshold.

Application (floating wind turbine): pre-calibration step consists in estimating model parameters that fit the measured data.

1) Surrogate models and GP Regression

Aim: approximation of the original model

Advantages: defined from a limited number of true evaluation and faster to evaluate.

One type of surrogate model: Gaussian Process Regression:

Hypothesis: model g is a realisation of a Gaussian Process.
Construction: with a Design of Experiment (DoE), sequentially
enriched by an inversion-adapted acquisition criterion [Picheny et al., 2010].

Fig. 2: Sequential construction of a DoE by GPR.

3) SUR Strategies [Bect et al., 2012]

Stepwise Uncertainty Reduction (SUR) strategies:

Quantify uncertainty reduction that can be achieved by the add of new point.

Notation: Hn uncertainty measure conditionnally to the event En.

Formulation:

xn+1 ∈ arg min
x∈X

Jn(x) and Jn(x) := E
[
Hn+1(x)

]
(2)

with Hn+1(x) expected uncertainty measure conditionnaly to En and to adding x to the DoE Xn.

Example: SUR Vorob’ev strategy [Chevalier, 2013]:

H V
n := E

[
PX
(
Γ∆Qn,α?n

) ∣∣ En] (3)

with PX probability measure on X, Γ := {z ∈ X, ξ(z)≤ T}, Qα?n Vorob’ev expectation (generalization of

expectation for random sets) [Molchanov and Molchanov, 2005] and ∆ symetric difference for random sets.

2) Bichon criterion [Bichon et al., 2008]

Bichon criterion: inversion-adapted acquisition criterion
Goal: find a compromise between finding a point:

-close enough to the border to be estimated,
-with a sufficiently high prediction standard deviation.

Notations: xn+1 new added point, ξ Gaussian process representing the model, En event given by

evaluations on the DoE (Xn) : ξ(Xn) = g(Xn) and σn prediction standard deviation.

Formulation:

xn+1 := argmax
x∈X

EFF(x) with EFF(x) := E
[(
ασn(x)− |T − ξ(x)|

)+ ∣∣ En] (4)

4) SUR Bichon criterion (Formulations)

Motivations: Find a more robust and easier to implement criterion than SUR Vorob’ev
one and with better performances than direct strategies

SUR Bichon criterion: defined by integrating Bichon criterion on the design space:

H B
n :=

∫
X

EFF(z) dPX(z) , J B
n (x) := E

[
Hn+1(x)

]
(5)

H B
n+1(x) :=

∫
X
E
[(
ασn+1(z)− |T − ξ(z)|

)+
∣∣∣ ξ(x), En

]
dPX(z) (6)

with σn+1 prediction standard deviation with the add of x to DoE (independent of the evaluation).

Simplified formulation:
J B
n (x) =

∫
X

EFFx(z) dPX(z) (7)

with EFFx(z) = (mn(z)− T )

[
2φ

(
T −mn(z)

σn(z)

)
− φ
(
T− −mn(z)

σn(z)

)
− φ
(
T+ −mn(z)

σn(z)

)]

− σn(z)

[
2ϕ

(
T −mn(z)

σn(z)

)
− ϕ

(
T− −mn(z)

σn(z)

)
− ϕ

(
T+ −mn(z)

σn(z)

)]

+ ε(z)

[
φ

(
T+ −mn(z)

σn(z)

)
− φ
(
T− −mn(z)

σn(z)

)] (8)

ϕ and φ respectively pdf and cdf of N (0, 1) andmn prediction mean. T± := T± ε(z) and ε(z) := ασn+1(z).

5) SUR Bichon criterion (Numerical Performances)

Implementation choice:
-performance comparison mea-
sure: PX(Γ̂n∆Γ?) with Γ̂n
estimator of set Γ? after n obs.
-test function is the Branin-
rescaled function on X := [0, 1]2

with T = 10.
-SUR optimisation with
Genoud algorithm.
-SUR Integration MC Sobol
with n.points = 10 000 ;
α = 1.

Encouraging results for
non-connex sets: Fig. 4

Fig. 4: On the left, representation of the log comparaison measure mean throught iterations, for the inversion of the Branin-rescaled function with T = 10, for 100 different

initial DoE of size 10 and type LHS Maximin. In the middle, violinplot of the performance comparaison measure after 20 iterations. On the right, representation of the

respectively Γ? estimator for one of the red arrow pointed cases. At right, representation of the respectively Γ? estimator for one of the red arrow pointed cases.

Fig. 5: Representation of the

Branin-rescaled function on X.
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