
Adaptive importance sampling for reliability
assessment of an industrial system modeled by a

Piecewise Deterministic Markov Process
Guillaume Chennetier 1,2 · Anne Dutfoy1 · Hassane Chraibi 1 · Josselin Garnier2

1 EDF Lab Paris-Saclay, Boulevard Gaspard Monge, 91120 Palaiseau, France.
2 CMAP, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.

Content

We wish to estimate the probability of failure of hybrid dynamic industrial systems represented by
piecewise deterministic Markov processes (PDMP). Crude Monte Carlo methods (CMC) are not suitable
for this purpose because the typical failure probabilities are very low. We propose instead an adaptive
importance sampling method with cross entropy procedure that achieves tremendous variance reduction.

The success of our method relies on the ability to approximate the committor function of the PDMP.
Our main contribution is to use the reliability concept of minimal path sets of the system to build a
good approximation of the committor function.
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1. PDMP – Piecewise Deterministic Markov Processes

Hybrid process : Zt = (Xt,Mt) ∈ E

▶ position Xt is continuous,

▶ mode Mt is discrete.

PDMP trajectories of duration tmax > 0.

Z := (Zt)t∈[0,tmax] ∼ πλ,K

where πλ,K is the distribution of the PDMP
characterized by jump intensity λ and kernel K .

Deterministic process between two jumps :

▶ mode remains constant Ms+t = Ms = m,

▶ position follows the flow Φ,

(Xs+t,m) = ΦXs ,m(t).

Jumps at the boundaries of E :

t∂z = inf{t > 0 : Φz(t) ∈ ∂E}.

Jumps at random times according to jump
intensity λ. Let Tz be the waiting time from z ,

P(Tz > t) = 1t<t∂z
e−

∫ t
0 λ(Φz(u))du.

The state of the process after a jump is randomly
selected by jump kernel K . Jumping from z− :

for B ⊂ E , PZ−=z− (Z ∈ B) =

∫
B
K (z−, dz).

What are we trying to do ?

Let π0 ≡ πλ0,K0
be the distribution of the PDMP Z and D a subset of the possible trajectories on E .

Goal : estimating P := Pπ0(Z ∈ D) when P is too small to be estimated by a crude Monte-Carlo method.

Application case : the PDMP models an industrial system. D is the set of trajectories that encounter
system failure and the probability of failure P is about 10−5.

2. Application case – Spent fuel pool system

Spent nuclear fuel is stored in a cold water pool. If the system does not cool the pool, the nuclear fuel
evaporates the water then damages the structure and contaminates the outside.

Figure 1 – Representation of the spent fuel pool. The temperature of an outside water source S1 is transfered to the
pool through three sealed circuits connected by heat exchangers L1,1, L2,1 and L3,1 forming a line L1. The system has a general power
supply G0. In the event of a problem with one of these components, the system is equipped with two other lines L2 and L3 identical to
L1, an emergency diesel generator for each line G1, G2 and G3, and a second outside water source S2 accessible only to the third line L3.

The system fails when the water level drops below a critical level. This is only possible when specific
combinations of components are broken.

Minimal path sets (MPS) of an industrial system

Figure 2 – 8 MPS of the SFP system.
(G0, S1,L1), (G1, S1,L1), (G0, S1,L2), (G2, S1,L2),
(G0, S1,L3), (G3, S1,L3), (G0, S2,L3), (G3, S2,L3).

The path sets of a system are the sets of components
such that :

▶ keeping all components of any path set intact
prevents system failure.

▶ keeping one component broken in each path set
ensures system failure.

A Minimal Path Set is a path set that does not
contain any other path set.

▶ dMPS is the number of MPS of the system,

▶ βz is the number of MPS with at least one
broken component in state z ∈ E .

3. Importance sampling for PDMP

Importance sampling for rare events : we generate trajectories from an auxiliary distribution π̃ which
produces more trajectories in D than π0 then we fix the bias with the proper likelihood ratio.

P̂IS :=
1

N

N∑
k=1

1Zk∈D
π0(Zk)

π̃(Zk)
a.s.−−−−→

N→∞
Eπ̃

[
1Z∈D

π0(Z)

π̃(Z)

]
= Eπ0 [1Z∈D] = P .

Variance reduction : strongly depends on the choice of π̃. Poor choices lead to a very high variance
estimator but optimal choice πopt(Z) := 1

P1Z∈D π0(Z) leads to a zero variance estimator.

Optimal importance distribution for PDMP

Distribution πopt : same state space E and same flow Φ as for π0 but optimal jump intensity λopt and
optimal jump kernel Kopt depend on Uopt the committor function of the process.

λopt(Φz−(t) ; s) = λ0(Φz−(t))×
U−
opt (Φz−(t), s + t)

Uopt (Φz−(t), s + t)
, (1)

Kopt
(
z−, z ; s

)
= K0

(
z−, z

)
×

Uopt (z , s)

U−
opt (z

−, s)
, (2)

with Uopt(z , s) = Pπ0 (Z ∈ D |Zs = z) and U−
opt(z

−, s) =
∫
E
Uopt(z , s)K0(z

−, dz).

What does that mean ?

Committor function : probability of reaching the rare event knowing the current state of the process.

Equation (1) : if the probability of reaching D is k times higher by jumping from a specific state than by
not jumping, then the jump intensity on that state must be multiplied by k .

Equation (2) : if the probability of reaching D is k times higher by jumping to a specific state than by
jumping randomly according to K , then the probability of jumping to that state must be multiplied by k .

If you know the committor function, you can build the optimal IS estimator !

4. Approximating the committor function

Idea : build a near-optimal importance distribution πα by using an approximation Uα instead of the
unknown function committor Uopt in equations (1) and (2).

Uα(z) = e

(∑βz
i=1 αi

)2
, α ∈ A ⊂ RdMPS. (3)

The closer βz is to dMPS, the closer the process is to D. Uα is therefore an increasing function in βz .

Cross entropy procedure

Sequential algorithm : we jointly tune α and estimate P .

arg min
α∈A

DKL
(
πopt∥πα

)
= argmin

α∈A

{
−Eπ0 [1Z∈D log (πα (Z))]

}
At iteration q = 1, . . . ,Q, we minimize an estimate of the KL divergence using all the trajectories drawn :

▶ Simulation phase. Generate a new sample of nq trajectories Z(q)
1 , . . . ,Z(q)

nq
i.i.d.∼ π

α(q).

▶ Optimization phase. Update the parameter α with the q last samples
(
Z(1)
k

)n1
k=1, . . . ,

(
Z(q)
k

)nq
k=1.

α(q+1) = argmin
α∈A

{
−

q∑
r=1

nr∑
k=1

1
Z(r)
k ∈D

π0
(
Z(r)
k

)
π
α(r)

(
Z(r)
k

) log [πα(Z(r)
k

)]}
.

Estimation phase at the final iteration Q (with NQ =
∑Q

q=1 nq), we reuse all past samples to estimate P :

P̂NQ
=

1

NQ

Q∑
q=1

nq∑
k=1

1
Z(q)
k ∈D

π0
(
Z(q)
k

)
π
α(q)

(
Z(q)
k

).

5. Numerical results

Method Sample size N Estimated probability P̂ Coefficient of variation 95% confidence interval

105 2× 10−5 223.60
[
0 ; 4.77× 10−5

]
CMC 106 1.3× 10−5 277.35

[
5.93× 10−6 ; 2.01× 10−5

]
107 1.77× 10−5 237.68

[
1.51× 10−5 ; 2.03× 10−5

]
102 2.18× 10−5 4.69

[
1.76× 10−5 ; 4.18× 10−5

]
IS 103 2.19× 10−5 3.01

[
1.78× 10−5 ; 2.60× 10−5

]
104 1.99× 10−5 1.01

[
1.96× 10−5 ; 2.03× 10−5

]
Table 1 – Comparison between crude Monte-Carlo (CMC) and our adaptive importance
sampling method (IS).

Our method reduces the variance of the estimation by a factor greater than 104 compared to a CMC method.


