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Introduction

Cross entropy method (Rubinstein, 1999)

Reference

• For problems with moderate number of components, the improved cross entropy method 

using Bernoulli mixture outperforms the one using the independent Bernoulli model.

• The improvement can be marginal when the system components are not strongly 

dependent conditional on the system failure.

Conclusions

Background

• Infrastructure networks, such as power grids and water supply systems are essential for 

societies.

• The quantification of the reliability, or conversely, the probability of failure of such 

systems under hazards is crucial for managing their reliability. 

Aim of this work

• Developing simulation based method for static network reliability, with a particular focus 

on rare event estimation. 

• The basic idea is to choose the importance sampling distribution (ISD) through 

minimizing the Kullback–Leibler (KL) divergence between the optimal ISD, 𝑝 𝒙|𝐹 and a 

chosen parametric model 𝑝 𝒙; 𝒗 . 

• The optimal parameter can be calculated through

• In practice we maximize another objective function 

• Define a sequence of intermediate target distributions connecting the input distribution 

to the optimal ISD.

• The CE optimization problem is then solved iteratively to get a good ISD.

• 𝑝(𝑥; ෝ𝒗(𝑡−1)) is chosen as the reference distribution for the CE procedure at level 𝑡.

Improved cross entropy method (Papaioannou et.al. 2019) 

• The sequence of intermediate target distributions is defined by a smooth transition of 

the indicator function

• The CE optimization problem is then solved iteratively to get a good ISD

• 𝑝(𝑥; ෝ𝒗(𝑡−1)) is chosen as the reference distribution for the CE procedure at level 𝑡.

Cross entropy method for rare event estimation

Numerical examples

Toy example (two terminal connectivity problem)

• 𝑔 𝑿 = 𝐜𝐨𝐧𝐧(s, t)

• The failure probability  𝑝𝑓 is 

equal to 0.0028.

• The optimal ISD has three major 

modes.
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Fig. 1. Topology of the network.

Fig. 2.   Performance of the improved CE estimator 

of the toy example (sample size: 105)

Fig. 3.  Boxplot of the improved CE estimator  of 

the toy example (sample size: 103)

Fitting the Bernoulli mixture model

• For updating the parameters of the Bernoulli mixture model, we use a modified version of 

the expectation-maximization (EM) algorithm that works with weighted samples (Geyer 

et.al., 2019). 

• A conjugate prior is used to smooth the weighted samples and help mitigate the 

overfitting issue.

• A model selection technique is employed to estimate the number of clusters K in the 

mixture. 

• The failure probability 𝑝𝑓 is equal to 

2.16 ⋅ 10−4.

• The optimal ISD has one major mode.

Fig. 5.   Performance of the improved CE estimator 

of the IEEE39 DC flow model (sample size: 105)
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Fig. 6.  Boxplot of the improved CE estimator  of 

the IEEE39 DC flow model (sample size: 103)

IEEE39 DC flow model

Fig. 4.   Topology of the IEEE39 network, with edge thickness proportional to their 

estimated capacities (left) and reactance (right).

• The improved CE method with single Bernoulli model (K=1) converges the slowest.
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