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Introduction
• Probabilistic approaches received growing interest in research community and industry during last decades
• Increasing complexity of industrial numerical model lead to higher and higher computational burden
• Machine Learning (ML) techniques are proven to ease the computational burden of reliability analyses
• Real-world applications often imply a high number of input variables, making the ML-based approaches more challenging

Challenges
• Determine failure probability Pf

• Reference: Monte Carlo (MC)
- Pros: no curse of dimensionality
- Cons: requires too many simulations of
(often) computationally expensive models

• Alternative: replace model with Kriging
- Pros: optimal adaptive construction
- Cons: curse of dimensionality
• Objectives: cost saving & accuracy
- Capability to efficiently determine Pf

- Handle high input dimensionality
- Provide a global measure of accuracy
- Balance accuracy/ computational burden

Surrogate model [2]
Kriging

+ Good exploration features
+ Proper error structure
- Curse of dimensionality

Training/ prediction based on covariance ker-
nel definition:
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Partial Least Square
+ Allows dimensionality reduction
- Limited accuracy

Projection of input variables:

t(h) = XW∗ y ≈ ct(h)

Kriging Partial Least Square
+ Good exploration features
+ Proper error structure
+ Scalable for high dimensional inputs
Modified covariance kernel definition:
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Proposed Mathematical Framework
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The global algorithm architecture is inspired from [4].
Scalable surrogate model
- KPLS [2] → extend Kriging advantages to high-
dimensional problems

Fully-adaptive algorithm
- Adaptive learning → iteratively enrich DoE
- Adaptive sampling → iteratively enrich MC

Variance decomposition
- VG → variance due to KPLS
- VX → variance due to MC
- VGX → covariance term (assumed negligible)

Variance-based learning criterion
- EFF function [1] → select new point
- Variance-based (V b) criterion → VG ≤ VX

Variance-based stopping criterion
- Total variance → VG + VX ≤ V = coV P 2

f

- Bootstrap → verify that VGX can be neglected
- Used for sampling and overall procedure

Numerical Results
Comparison with U (from AK-MCS [3]) and
EFF approach [1].

Input variables (53 overall)

Limit state function
g(Vall, XS) = Vall − V1(XS)
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Conclusion
We achieved the main objective of conceiving a ML-based approach for reliability applications:

• scalable, thus able to extend Kriging exploration features to high-dimensional problems
• efficiently updating the training set with the most relevant inputs
• reducing computational efforts with respect to other referenced methods
• able to distinguish the different sources of error, in terms of variance, of the Pf estimation
• providing a global measure of variability of the failure probability estimate
• guaranteeing a good overall accuracy by balancing the sources of uncertainty.
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