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Introduction

Challenges

e Determine failure probability Py
e Reference: Monte Carlo (MC)
- Pros: no curse of dimensionality

- Cons: requires too many simulations of
(often) computationally expensive models

e Alternative: replace model with Kriging
- Pros: optimal adaptive construction

- Cons: curse of dimensionality

e Objectives: cost saving & accuracy

- Capability to efliciently determine Py

- Handle high input dimensionality

- Provide a global measure of accuracy

- Balance accuracy/ computational burden

Surrogate

Kriging

+ Good exploration features

+ Proper error structure
- Curse of dimensionality

Training,/ prediction based on covariance ker-
nel definition:
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Partial Least Square

-+ Allows dimensionality reduction
- Limited accuracy

Projection of input variables:
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Kriging Partial Least Square
+ Good exploration features

+ Proper error structure

-+ Scalable for high dimensional inputs
Modified covariance kernel definition:
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e Probabilistic approaches received growing interest in researc!
e Increasing complexity of industrial numerical model lead to higher and higher computational burden
e Machine Learning (ML) techniques are proven to ease the computational burden of reliability analyses

e Real-world applications often imply a high number of input variables, making the ML-based approaches more challenging

n community and industry during last decades

Proposed Mathematical

The global algorithm architecture is inspired from [4].
Scalable surrogate model
Initialize: MC, DoE - KPLS [2|] — extend Kriging advantages to high-

! dimensional problems
» Evaluate: Full model on DoE

] . .
T KPLS on Dof Fully-adaptive algorithm

Enrich - Adaptive learning — iteratively enrich DoFE
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Variance decomposition: Variance decomposition
Vy due to MC

V.. due to KPLS - Vo — variance due to KPLS

- Vx — variance due to MC
Y . -
@ Vg > Vy N - Vax — covariance term (assumed negligible)
|

Variance-based learning criterion
Ve +Vy >V - EFF function [1| — select new point
- Variance-based (V'b) criterion — Vg < Vy

Bootstrap: Voor > 7 Variance-based stopping criterion

Pf; VTOT

- Total variance — Vg + Vy <V = coVP]%
- Bootstrap — verify that Vo x can be neglected
- Used for sampling and overall procedure

Numerical Results

Comparison with U (from AK-MCS |[3]) and
EFF approach [1].

Input variables (53 overall) )
P, P, Py P, Py P, 10771
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Limit state function Enrichments
g(Vour, Xg) = Vo — V1(Xg) Evolution of P as function of DoFE updates
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Conclusion

We achieved the main objective of conceiving a ML-based approach for reliability applications:

e scalable, thus able to extend Kriging exploration features to high-dimensional problems

o cfficiently updating the training set with the most relevant inputs

e reducing computational efforts with respect to other referenced methods

e able to distinguish the different sources of error, in terms of variance, of the P, estimation
e providing a global measure of variability of the failure probability estimate

e guaranteeing a good overall accuracy by balancing the sources of uncertainty.
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