
Grey-box approach

Physics Informed Neural Networks Implementation using variational formulation
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Fig.2 : The PINNs framework for a boundary value problem

A simple continuum mechanics example
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depends only on dipslacement depends only on stress
= potential energy to minimise = complementary energy to maximise

weak form

deformation energy
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Fig.3 : Finite element ground truth solution

Fig.4 : Optimization for two distinct neural networks simulating stress and displacementFig.1 : The grey box methodology
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Physics Informed Neural Networks for 
uncertainty quantification 

- A simple continuum mechanics example -

When solving physical problems governed by partial differential equations, the finite element method (FEM), or similar, has long proven its effectiveness. 

Why then look for a new method to solve this same problem ?
First, FEM can be too time consuming to perform uncertainty quantification. Second, new sensors can change the game by providing richer data. 

On these two aspects neural network models have shown  great potential, which motivates their use as PDE solvers in a grey box approach.
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Equations :
momentum balance 

small deformation

elastic relation
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Fields :
𝜎𝜎 : stress tensor

𝜀𝜀 : strain tensor

𝑢𝑢 : displacement

Domain : clamped beam
Theory : linear elasticity

PINNs implementation : two networks (𝑁𝑁𝑢𝑢;𝑁𝑁𝜎𝜎) / Boundary conditions enforced by shape functions

Artificial neural networks : universal interpolator
smart architecture based on prior knowledge gives better results

example : convolutional neural network (shift invariant) for image recognition

Physics Informed Neural Networks (PINNs): impose physics prior 
Introduced in 2019 by Raissi et Al. [1], very active research topic since 

 Hard constraint : compliance forced by ad-hoc solution form
 Soft constraint : compliance reached by minimizing a loss

Common example : - calculate a PDE thanks automatic differentation
- add the residual to the loss function

loss minimized compliance to the PDE

𝛴𝛴kinematically admissible
displacement fields 𝑈𝑈 statically admissible

stress fields
find those that satisfy the 

elastic equation

can be reformulated in the complementary energy theorem :

decoupled training or monitoring of 𝑵𝑵𝒖𝒖 and 𝑵𝑵𝝈𝝈

Goal : simulate observable phenomena, two approaches :

combine the two ?
(not new : e.g., physical laws with empirical parameters)

both methods have developed fast with computing
new possible hybrid models  

White box :
numerical solution of the 

problem equated according to 
a physical theory

Black box :
data driven solution

= statistics, then diversified 
into machine learning

This work is still at early stage, the example is simple, and the use of linear elasticity brings limitation. Nevertheless, the use of  two networks 𝑵𝑵𝒖𝒖 and 
𝑵𝑵𝝈𝝈 to simulate continuum mechanics response opens the path to further research. Two possible ways are to combine  this idea with either :

 Full field measurment (e.g., obtained by Digital Image Correlation) that can be used as training data or for inverse quantification 

 Model free approach that doesn’t assume any empirical relation between stress and strain but directly infer them from data

Fig.5 : Potential and complemantary energy during optimization
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