KU LEUVEN

Physics Informed Neural Networks for uncertainty quantification - A simple continuum mechanics example -

*Contact : damien.bonnet-eymard@kuleuven.be

Damien Bonnet-Eymard^{*,1}, Augustin Persoons¹, Matthias Faes², David Moens¹

¹KU Leuven, Belgium ²TU Dortmund, Germany

When solving physical problems governed by partial differential equations, the finite element method (FEM), or similar, has long proven its effectiveness.

Why then look for a new method to solve this same problem ?

First, FEM can be too time consuming to perform uncertainty quantification. Second, new sensors can change the game by providing richer data. On these two aspects **neural network** models have shown great potential, which motivates their use as PDE solvers in **a grey box** approach.

Grey-box approach

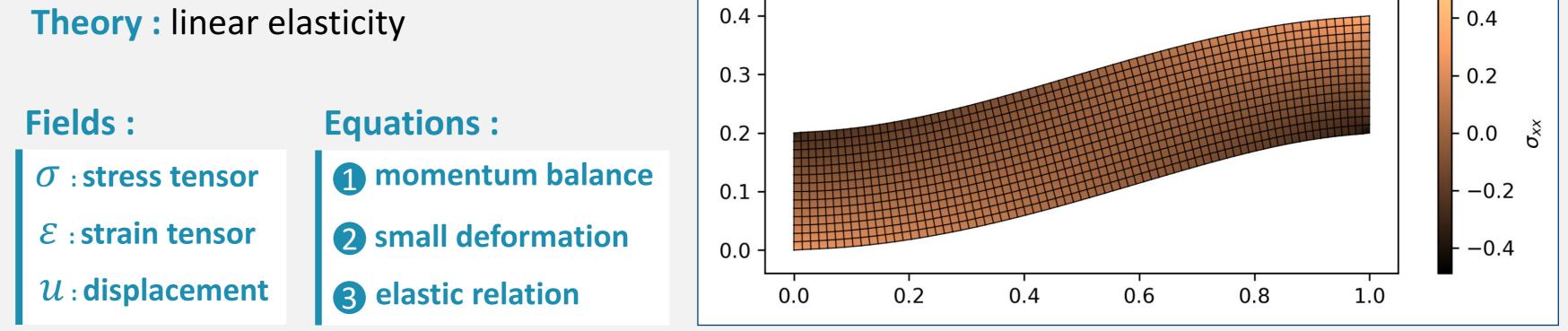
Goal : simulate observable phenomena, two approaches :

White box :	Black box :

A simple continuum mechanics example

Domain : clamped beam

Stress and displacement of a clamped elastic beam



numerical solution of the problem **equated** according to a *physical theory*

data driven solution = **statistics**, then diversified into **machine learning**

combine the two?

(not new : e.g., physical laws with empirical parameters)

→ both methods have developed fast with computing

L new possible hybrid models

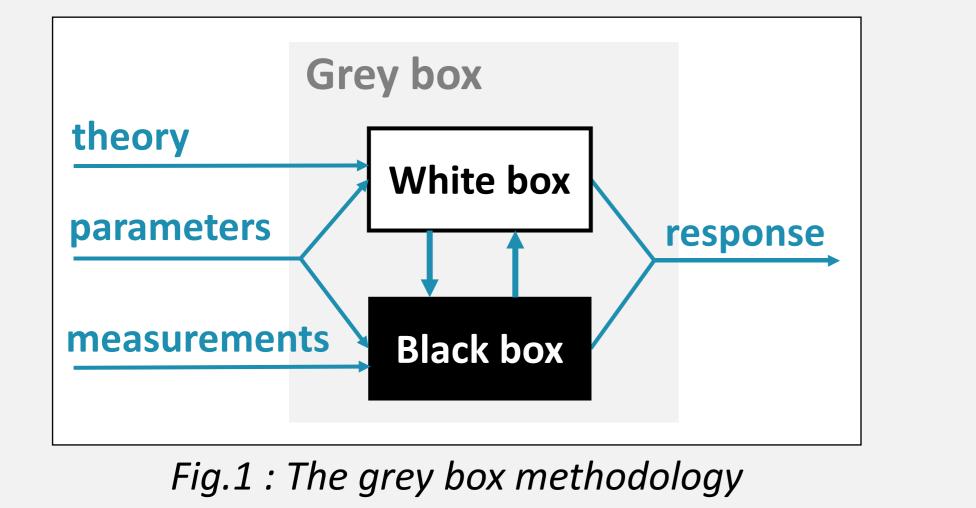


Fig.3 : Finite element ground truth solution

PINNs implementation : two networks $(N_u; N_\sigma)$ / Boundary conditions enforced by shape functions

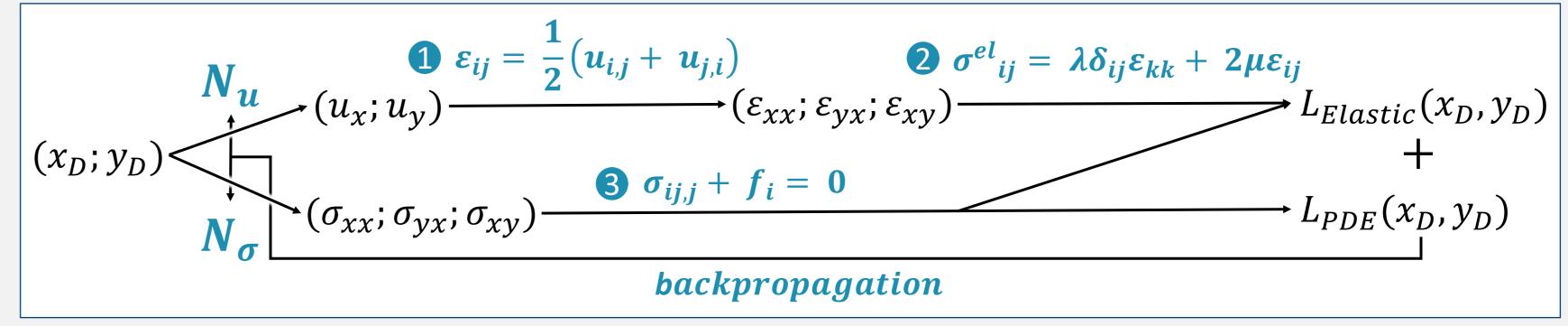


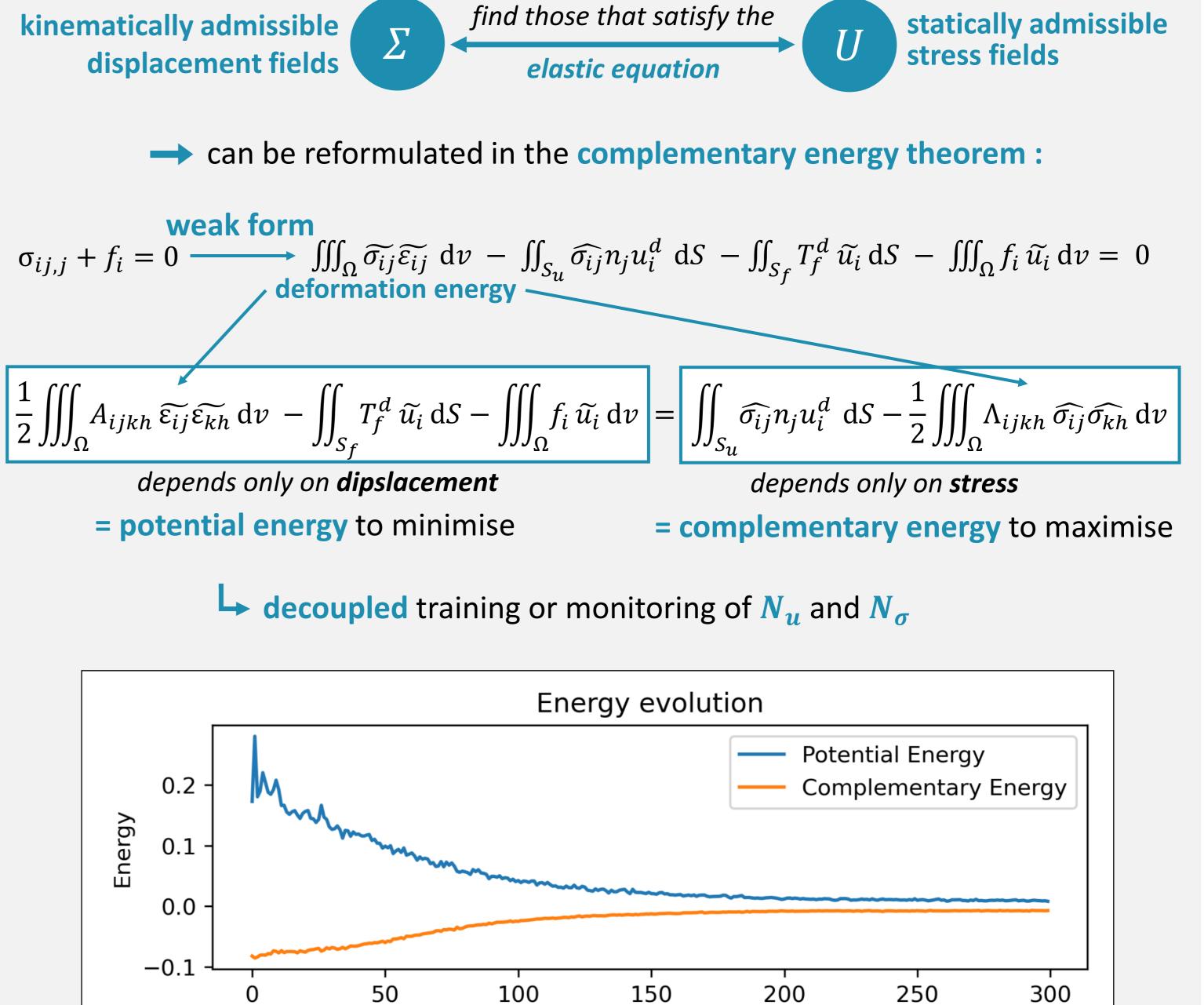
Fig.4 : Optimization for two distinct neural networks simulating stress and displacement

Physics Informed Neural Networks

Artificial neural networks : universal interpolator

smart architecture based on prior knowledge gives better results

Implementation using variational formulation



- example : convolutional neural network (shift invariant) for image recognition
- -> Physics Informed Neural Networks (PINNs): impose physics prior Introduced in 2019 by Raissi et Al. [1], very active research topic since
 - Hard constraint : compliance forced by ad-hoc solution form
 - **Soft constraint :** compliance reached by minimizing a loss

Common example : - calculate a PDE thanks automatic differentation - add the residual to the loss function

compliance to the PDE

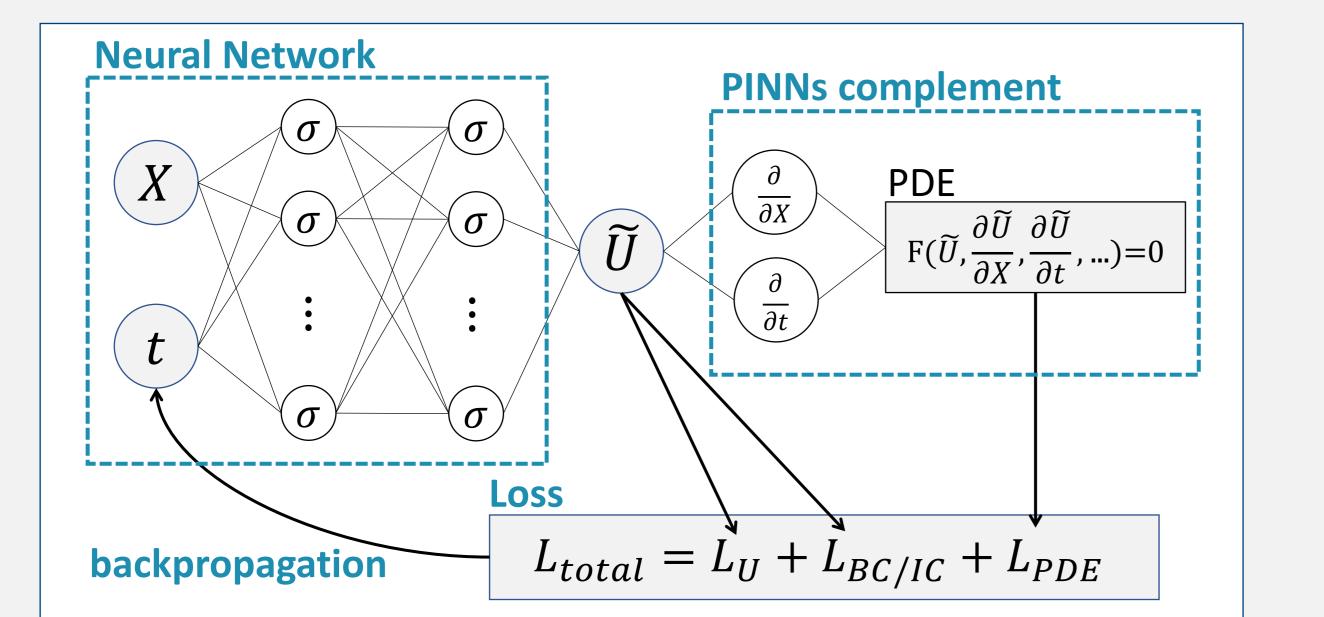


Fig.2 : The PINNs framework for a boundary value problem

Fig.5 : Potential and complemantary energy during optimization

This work is still at early stage, the example is simple, and the use of linear elasticity brings limitation. Nevertheless, the use of two networks N_u and N_{σ} to simulate continuum mechanics response opens the path to further research. Two possible ways are to combine this idea with either :

- Full field measurment (e.g., obtained by Digital Image Correlation) that can be used as training data or for inverse quantification
- Model free approach that doesn't assume any empirical relation between stress and strain but directly infer them from data

References:

1. Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019 Feb; 2. François Sidoroff. Mécanique des milieux continus. École d'ingénieur. École Centrale de Lyon, France. 1980

Acknowledgment :

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 955393.