

Deterministic optimization in Deep Learning from a continuous and energetic point of view

Bensaid Bilel^{1,2}, Turpault Rodolphe¹ and Gael Poette² ¹Institut de Mathematiques de Bordeaux, F-33405 Talence, France & ²CEA, CESTA, DAM, F-33114 Le Barp, France

Context and Issue

- Substitute parts of simulation codes with Deep Learning Models \Rightarrow Build efficient **shallow** networks
- Sensitivity analysis \Rightarrow the **OPTIMIZER** appears as the main leverage to improve performances
- Objective :

Better understanding of the deterministic algorithms

Starting Point

- NEW TEST METHODOLOGY : Construction of neural networks which enable the **localization of critical points**;
- Sensitivity to the initializer \Rightarrow Display for each mnimum θ^* the regions : \mathcal{A} : a given optimizer;
 - ϵ : a small positive value (fixed to 10^{-3}).

$$\mathcal{E}_{\theta^*} = \{\theta_0, \|\mathcal{A}(\theta_0) - \theta^*\| < \epsilon\}$$

Results

- Maximum and saddle points instabilities in continuous-time;
- Convergence/Moderate sensitivity to the initializer without tuning :

(a) Adaptive Gradient Descent

Efficiency of the new schemes

(b) Adaptive Momentum

References

[1] G. Kluth & al. Deep learning for nite spectral opacities. *Physics of Plasmas*, 27(5):052707, 2020

Paul Novello, Gael Poette & al. Explainable Hyperparameters Optimization using Hilbert-Schmidt Independence Criterion. June 2021. [2]