
► Optimization problem:
minimize 𝑓(𝑥) subject to 𝑔 𝑥 ≤ 0

► Multidisciplinary design optimization problem:
𝑓 and 𝑔 result from the evaluation of 𝑁 coupled disciplines 𝜙ଵ, … , 𝜙ே:

where 𝑥 = 𝑥଴, 𝑥ଵ, … , 𝑥ே are the design variables and 𝑦 = 𝑦ଵ, … , 𝑦ே the coupling ones.
 One of the challenges of MDO is to solve the coupling system 𝑦 = 𝜙(𝑥, 𝑦).

► MultiDisciplinary Feasible (MDF) formulation of the MDO problem:
If 𝜙 is 𝐶ଵ, there exists a 𝐶ଵ function 𝑐 such that 𝑦 = 𝑐 𝑥 . Then,

minimize 𝑓ሚ (𝑥, 𝑐(𝑥))
subject to 𝑔଴ 𝑥, 𝑐(𝑥) ≤ 0 and 𝑔௜ 𝑥଴, 𝑥௜ , 𝑐௜(𝑥) ≤ 0, 𝑖 ∈ {1, … , 𝑁}

In practice, 𝑐(𝑥) is approximated with a point-fixed algorithm.
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► The introduction of uncertain parameters in multidisciplinary design
optimization (MDO) problems is an active research topic [1] .

► Objective: To assess the efficiency of uncertain quantification methods in
MDO, build a parametric benchmark problem:

In a plane wing MDO problem with 2 disciplines
(aero, structure), an uncertain variable can be
the drag coefficient:

 handling different problem sizes (scalability),
 handling different distributions for the uncertain variables,
 compatible with the whole UMDO process,
 providing an analytical solution.

But it raises two main difficulties:
 considerably increases the complexity of the problem

due to repeated runs of the deterministic case
 can only be tested on industrial use-cases

1. Introduction

5. Perspectives
► Deepen the results of MC and TSE: probability distributions, variance rate, sampling size, …
► Test other estimation techniques: MLMC, FORM/SORM, importance sampling, stochastic algorithms, …
► Extension to decoupled and bi-level formulations.

3. A parametric benchmark for robust MDO
► MDF formulation of a robust MDO problem:

minimize 𝔽 𝑓 𝑥଴, 𝑈଴, 𝑐 𝑥, 𝑈

subject to
𝔾଴[ 𝑔଴ 𝑥଴, 𝑈଴, 𝑐 𝑥, 𝑈 ] ≤0  and 𝔾௜[𝑔௜ 𝑥଴, 𝑥௜ , 𝑐௜ 𝑥, 𝑈 ] ≤ 0, 𝑖 ∈ {1, … , 𝑁}

where 𝑈଴, 𝑈ଵ, … , 𝑈ே are independent centered random variables
with covariance matrices 𝛴଴ … 𝛴ே and 𝔽and 𝔾 are deterministic statistics.

► [2] proposed a parametric MDO problem to which we added random variables
at the disciplinary levels:

minimize 𝔽 𝑥଴
்𝑥଴ + ∑ 𝑌௜

்𝑌௜
ே
௜ୀଵ

subject to 𝔾଴[ 𝑔଴ 𝑥଴, 𝑈଴, 𝑐 𝑥, 𝑈 ] ≤ 0

where 𝑌௜ = 𝑐௬௜ − 𝐶௬೔௫బ
𝑥଴ − 𝐶௬೔௫೔

𝑥௜ + ∑ 𝐶௬೔௬ೕ
𝑌௜ + 𝑈௜

ே
௜ୀଵ

► Our contributions:
 Scale the coupling variables to the unit hypercube.
 Rewrite the MDO problem as a quadratic programming (QP) problem:

minimize ଵ
ଶ

𝑥்𝑄𝑥 + 𝑐்𝑥

subject to A𝑥 ≤ 𝑏

 Find the conditions on the variable dimensions for a unique global minimum 𝑥∗.
 Reduce the robust MDO problem to a QP problem when 𝔽 is the expectation and

𝔾 is a margin or a probability(1):

minimize ଵ
ଶ

𝑥்𝑄𝑥 + 𝑐்𝑥

subject to A𝑥 ≤ 𝑏 + 𝑒

 Estimate the statistics with Monte Carlo (MC) or Taylor series expansion (TSE).

(1) margin: 𝔾[𝑔 𝑥, 𝑈 ] = 𝔼[𝑔 𝑥, 𝑈 ] + 𝜅 𝕧[𝑔 𝑥, 𝑈 ]
  ; probability: 𝔾[𝑔 𝑥, 𝑈 ]= ℙ[𝑔 𝑥, 𝑈 ≥ 0]  − 𝜖.

2. Multidisciplinary design optimization

► Estimation of the reference result with less than 4% rate of error.
► Complexity when the constraint is a probability.

4. Numerical experiments

FEM view of a plane wing

► Problem:
- 𝑁 = 2,  𝑛௫బ

= 1, 𝑛௫భ
= 2, 𝑛௫మ

= 2, 𝑛௬భ
= 3, 𝑛௬మ

= 3.

- Σ = 𝜎 × 𝐼௡೤
with 𝜎 = 0.01, 𝜅 = 2, 𝜖 = 0.01.

► Numerical settings:
- Sampling: 20 or 200 Monte Carlo realizations, repeated 20 times.
- First-order linearization: analytical derivatives.
- Second-order linearization: analytical derivatives + finite differences.
- Optimization algorithm: COBYLA.
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