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• Degradation of magnesium is a multiphysics process that is complex and.
computationally expensive to model.

• Model key parameters (e.g. reaction rate constants, diffusion coefficients,
etc) cannot be found in literature and some cannot be measured using
experiments.

• Sensitivity analysis approaches are computationally expensive and limited
in the case of complex models.

• The surrogate models reduce the complexity of the degradation models
without compromising their accuracy.

• Model predictions are strongly influenced by parameter uncertainty.

𝜕𝑐ெ௚

𝜕𝑡
=

𝜖𝑘ௗ௘௚

1 + exp(−(𝑡 − 𝑡௜௡௜௧))

Degradation reaction and its corresponding 
kinetic mathematical model
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 Surrogate modelling approach reduces the computation time and simplifies the simulation of the degradation
process without compromising the accuracy of the complex degradation model.

 A PCE-Surrogate model enables us to carry out the sensitivity analysis for the full range of input parameter
distributions.

 We implemented global sensitivity analyses in order to quantify the influence of the variation in model key
parameters 𝑘ௗ௘௚ and 𝑡௜௡௜௧ on the estimations of the degradation rate for magnesium-based implants.

 Sample-based and linearization methods provide an overview of the system especially in the case of limited
computing power.
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Surrogate model based sensitivity analysis 

𝜌௜ : correlation based indices 

 Creating the surrogate model required a minim 
observations of the original model (≅  2𝑁௣) (steps 1 
and 2).

 After creating a surrogate model (steps 3-5) and 
validating it, further analysis and testing can be 
performed; e.g. uncertainty propagation and 
sensitivity analysis (step 6).

 The surrogate model is able to cover the entire 
input distribution of parameters (step 4). 

 The sensitivity analysis reflect the impact of each 
parameter over the model output.

* 𝑁௣  : Number of Parameters
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Fig. 4: PCE-based sensitivity analysis for the first 10 days of the degradation. The influence of the 
key parameters 𝑘ௗ௘௚  and 𝑡௜௡௜௧ on the mean degradation depth of magnesium-based implants
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Fig. 3: The validation of 
the PCE surrogate 
model of mean 
degradation depth vs. 
Optimized model and 
experimental data 
obtained using µCT.

Fig. 2: a)The estimated 
mean degradation 
depth distribution by 
PCE model vs 
optimized model. b)
The run time of 
surrogate vs. original 
model
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Fig. 1: Schematic diagram of implementing the surrogate modeling approach to model 
the degradation of magnesium-based implants. 
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