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❑ Assessing the reliability of systems for risk-sensitive industries such as power generation is crucial
to ensure their safety. Such assessment is subject to uncertainty which is commonly distinguished
into two types:

➢ Aleatory: inherent property of the physical quantity, considered irreducible
➢ Epistemic: result of a lack of knowledge, potentially reducible by gathering more information

❑ Evaluating the robustness of reliability quantities (e.g., probabilities of failure) aims at checking that
the reliability quantity of interest fulfills a safety requirement despite the presence of epistemic
uncertainty.

❖ Motivation:
How to efficiently quantify the robustness of reliability quantities ?

❖ Challenge:
Propose a methodology based on a performant failure probability estimator and smart algorithms for
reducing the computational burden induced by the info-gap method.

1. Industrial context

❑ The failure probability of penstocks under brittle failure at year 𝑁 + 1 is expressed as:

𝑃f =
Pr 𝐺𝑁+1 ≤ 0 ∩ 𝐺𝑁 > 0 ∩ 𝐺HPT > 0

Pr 𝐺HPT > 0
.

❑ Three equivalent events:

➢ 𝐸1 = max 𝐺𝑁+1, −𝐺𝑁, −𝐺HPT ≤ 0

➢ 𝐸2 = 𝐺𝑁+1. 𝐺𝑁 ≤ 0 ∩ 𝐺HPT > 0

➢ 𝐸3 = 𝐺𝑁+1 ≤ 0 ∩ 𝐺𝑁 > 0 ∩ 𝐺HPT > 0

2. Reliability of penstocks [1]

𝑿𝒊 Dist. p1 p2 p3

𝑋1 = 𝑅𝑚 LN 480 24 -

𝑋2 = Δ𝑒app N 𝜃1 0.25 -

𝑋3 = Δ𝑒cor N 𝜃2 0.4 -

𝑋4 = 𝜀 N 0 16.8 -

𝑋5 = 𝑎 U 0 𝜃3 -

𝑋6 = 𝐾IC WM 𝜃4 4 20

3. Info-gap [2]

❑ Robustness of 𝑃f w.r.t. the uncertain distribution parameters 𝜽:

ℎIG
∗ = max
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4. Generalities on line sampling [3]

❑ Isoprobabilistic mapping to the standard
space:

𝑼 = 𝑇 𝑿

❑ Isoprobabilitic rotation driven by 𝜶:

𝑽 = 𝑹𝑼

6. Combination of LS and Neural Networks
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✓Combination of two neural networks in the augmented
space 𝑼,𝚯 𝑇.

➢ ANN1 : classification neural network → predicts the
existence or not of both roots.

➢ ANN2: regression neural network → predicts the values
of both roots when they exist.

➢ 𝑠: value that decides if the output probability 𝑝1 of
ANN1 is to be trusted or not.
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5. Adapted LS for the reliability of penstocks

𝐴𝐸3

Find 𝑟1 s.t. 𝐺𝑁+1
⊥ 𝑟1 = 0

If 𝐺HPT
⊥ 𝑟1 > 0 then

Find 𝑟2 s.t. 𝐺𝑁
⊥ 𝑟2 = 0

If 𝐺HPT
⊥ 𝑟2 < 0 then

Find 𝑟2 s.t. 𝐺HPT
⊥ 𝑟2 = 0

Else:

No roots

! No unicity of the roots::

• Case 1: there is no root

𝑝f
𝑖
= 0

• Case 2: there are two roots

𝑝f
𝑖
= Φ −𝑟1

𝑖
−Φ −𝑟2

𝑖

✓Construction of one algorithm 𝐴𝐸𝑖 for each event 𝐸𝑖:

❑ Robustness analysis

ℎIG
∗ = max

ℎ≥0
max

𝜽∈𝑈 ෩𝜽,ℎ
𝑃f 𝜽 ≤ 𝑃f

cr ;  𝐼𝜃𝑖 ℎ = ൝
෩𝜃𝑖 1 − ℎ , ෩𝜃𝑖 1 + ℎ , if ෩𝜃𝑖 > 0

1 − ℎ, 1 + ℎ , if ෩𝜃𝑖 = 0

7. Results

• Search of 𝑃f ℎ𝑗 for 10 value of ℎ𝑗 ∈ 0, 0.2 with ANN1 and ANN2 trained on 3 × 104 samples.

✓ Line sampling was successfully adapted on a complex limit-state function.

✓ Two artificial neural networks were combined to directly predict the LS roots in the info-gap
augmented space with the possibility to control the error of the first ANN.

❖ Most applications cannot afford as many training samples. There is a need to try other surrogate
models in the augmented space.

❖ Sensitivity analysis could considerably help the optimization process.

8. Conclusions and perspectives
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