edf

Adapted line sampling and neural networks for evaluating the info-gap robustness of reliability estimates for penstocks

> A. Ajenjo^{1,2}, E. Ardillon¹, V. Chabridon¹, S. Cogan² and E. Sadoulet–Reboul² ¹EDF R&D: 6 Quai Watier, Chatou, France ²Femto–ST: 26 rue de l'Epitaphe, Besançon, France Email: antoine.ajenjo@edf.fr

1. Industrial context

- Assessing the **reliability** of systems for risk-sensitive industries such as power generation is crucial to ensure their safety. Such assessment is subject to **uncertainty** which is commonly distinguished into two types:
- > Aleatory: inherent property of the physical quantity, considered irreducible
- > Epistemic: result of a lack of knowledge, potentially reducible by gathering more information
- **D** Evaluating the **robustness** of reliability quantities (e.g., probabilities of failure) aims at checking that the reliability quantity of interest fulfills a safety requirement despite the presence of epistemic uncertainty.

Motivation:

How to efficiently quantify the robustness of reliability quantities ?

✤ Challenge:

Propose a methodology based on a performant failure probability estimator and smart algorithms for reducing the computational burden induced by the info-gap method.

 \Box Robustness of P_f w.r.t. the uncertain distribution parameters θ :

h_{IG}^*	_	max	\	max	$P_{\rm f}(\boldsymbol{\theta})$	$) \leq$	$P_{\rm f}^{\rm cr}$

3. Info-gap [2]

$h \ge 0 \ \left(\boldsymbol{\theta} \in U(\widetilde{\boldsymbol{\theta}},h) \right)$ IU

2. Reliability of penstocks [1]

 \Box The failure probability of penstocks under brittle failure at year N + 1 is expressed as:

$$P_{\rm f} = \frac{\Pr(\{G_{N+1} \le 0\} \cap \{G_N > 0\} \cap \{G_{\rm HPT} > 0\})}{\Pr(\{G_{\rm HPT} > 0\})}$$

□ Three equivalent events:

 $\succ E_1 = \{\max(G_{N+1}, -G_N, -G_{HPT}) \le 0\}$

 $\succ E_2 = \{G_{N+1}, G_N \le 0\} \cap \{G_{HPT} > 0\}$

 $\succ E_3 = \{G_{N+1} \le 0\} \cap \{G_N > 0\} \cap \{G_{HPT} > 0\}$

X _i	Dist.	p1	p2	р3
$X_1 = R_m$	LN	480	24	-
$X_2 = \Delta e_{\mathrm{app}}$	Ν	$ heta_1$	0.25	-
$X_3 = \Delta e_{\rm cor}$	Ν	θ_2	0.4	-
$X_4 = \varepsilon$	Ν	0	16.8	-
$X_5 = a$	U	0	$ heta_3$	-
$X_6 = K_{IC}$	WM	$\theta_{\mathtt{A}}$	4	20

4. Generalities on line sampling [3]

□ Isoprobabilistic mapping to the standard space:

 $\boldsymbol{U}=T(\boldsymbol{X})$

 \Box Isoprobabilitic rotation driven by α : V = RU

 $u_{1}^{(i)}$

$$P_{\mathrm{f}} = \int_{\mathbb{R}^{n-1}} \int_{G^{\perp} \leq 0} \varphi_{V_{1}(v_{1})} dv_{1} \varphi_{U_{\alpha}^{\perp}}(\boldsymbol{u}_{\alpha}^{\perp}) d\boldsymbol{u}_{\alpha}^{\perp} = \int_{\mathbb{R}^{n-1}} \Phi\left(-r(\boldsymbol{u}_{\alpha}^{\perp})\right) \varphi_{U_{\alpha}^{\perp}}(\boldsymbol{u}_{\alpha}^{\perp}) d\boldsymbol{u}_{\alpha}^{\perp}$$

$$P_{\mathrm{f}} = \mathbb{E}_{\boldsymbol{U}_{\boldsymbol{\alpha}}^{\perp}} \left[\Phi \left(-r(\boldsymbol{u}_{\boldsymbol{\alpha}}^{\perp}) \right) \right] \approx \frac{1}{n_{\mathrm{LS}}} \sum_{i=1}^{n_{\mathrm{LS}}} \Phi \left(-r\left(\boldsymbol{u}_{\boldsymbol{\alpha}}^{\perp,(i)}\right) \right) = \frac{1}{n_{\mathrm{LS}}} \sum_{i=1}^{n_{\mathrm{LS}}} p_{\mathrm{f}}^{(i)}$$

5. Adapted LS for the reliability of penstocks

6. Combination of LS and Neural Networks

- **Case 1**: there is no root $p_{\rm f}^{(i)}=0$
- **Case 2**: there are two roots

$$p_{\rm f}^{(i)} = \Phi\left(-r_1^{(i)}\right) - \Phi\left(-r_2^{(i)}\right)$$

 \checkmark Construction of one algorithm A_{E_i} for each event E_i :

<u>4</u>1.2-

- Combination of two neural networks in the augmented space $(\boldsymbol{U}, \boldsymbol{\Theta})^T$.
- \succ ANN₁: classification neural network \rightarrow predicts the existence or not of both roots.
- \rightarrow ANN₂: regression neural network \rightarrow predicts the values of both roots when they exist.
- \succ s: value that decides if the output probability p_1 of ANN_1 is to be trusted or not.

A_{E_3} -ANN s = 0.1 A_{E_3} -ANN s = 0.2 A_{E_3} -ANN s = 0.3orgotten roots alse roots 2000 3000 1000 $n_{\rm LS}$

8. Conclusions and perspectives

7. Results

□ Robustness analysis

✓ Line sampling was successfully adapted on a complex limit-state function.

$$h_{\mathrm{IG}}^* = \max_{h \ge 0} \left\{ \max_{\boldsymbol{\theta} \in U(\widetilde{\boldsymbol{\theta}}, h)} P_{\mathrm{f}}(\boldsymbol{\theta}) \le P_{\mathrm{f}}^{\mathrm{cr}} \right\}; \ I_{\theta_i}(h) = \begin{cases} \left[\widetilde{\theta_i}(1-h), \widetilde{\theta_i}(1+h) \right], & \text{if } \widetilde{\theta_i} > 0\\ \left[1-h, 1+h \right], & \text{if } \widetilde{\theta_i} = 0 \end{cases}$$

• Search of $\overline{P_f}(h_i)$ for 10 value of $h_i \in [0, 0.2]$ with ANN₁ and ANN₂ trained on 3 × 10⁴ samples.

- ✓ Two artificial neural networks were combined to directly predict the LS roots in the info-gap augmented space with the possibility to control the error of the first ANN.
- * Most applications cannot afford as many training samples. There is a need to try other surrogate models in the augmented space.
- Sensitivity analysis could considerably help the optimization process.

References

[1] E. Ardillon, Bryla, P., and A. Dumas. Reliability-based optimization of quantiles for diagnoses of hydropower penstock pipes. Proceedings of the 14th International Conference on Structural Safety and Reliability, Shanghai, 2022.

[2] Y. Ben-Haïm. Info-Gap Decision Theory: Decisions under Severe Uncertainty. Elsevier, 2006.

[3] P. Koutsourelakis, H. Pradlwarter, G. Schueller, Reliability of structures in high dimensions, part I: algorithms and application, Probabilistic Engineering Mechanics 19 (2004) 409–417.