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1. Industrial context 3. Info-gap [2

O Assessing the reliability of systems for risk-sensitive industries such as power generation is crucial

to ensure their safety. Such assessment is subject to uncertainty which is commonly distinguished 1 h3} Pe(6h,)
into two types: i O, o
: : : ] . i ] T
> Aleatory: inherent property of the physical quantity, considered irreducible 5.9;1 e
> Epistemic: result of a lack of knowledge, potentially reducible by gathering more information i
0 Evaluating the robustness of reliability quantities (e.g., probabilities of failure) aims at checking that Rl E Ml s e T 0,
the reliability quantity of interest fulfills a safety requirement despite the presence of epistemic W), ) U A S
uncertainty. U(hy)
U (hy) . |
** Motivation: ! 0 P:(9)

How to efficiently quantity the robustness of reliability quantities ? S
O Robustness of P¢ w.r.t. the uncertain distribution parameters 0:

% Challenge:
hic = max{ max P¢(0) < P¢'
Propose a methodology based on a performant failure probability estimator and smart algorithms for 'S Theo {eeu(“é,h) (6) <P }

reducing the computational burden induced by the info-gap method.

2. Reliability of penstocks [1]

d Isoprobabilistic mapping to the standard
space:
corr(N) .
U=T(X)
 The failure probability of penstocks under brittle failure at year N + 1 is expressed as:  Isoprobabilitic rotation driven by a:
V=RU
p. Pr({Gy+1 < 0} N{Gy > 0} N {Gypr > 0}) “ a :
f Pr({Gupr > 0}) ,,-"M‘\/"m U
. PO
SRR T R AR
Xl — R LN 480 R"-1 gl<Q RN—1
» E; = {max(Gy41, —Gy, —Gypr) < 0} Xy = Aeapp N 6, 0.25 _
X; = Ae N6 04 - 'S 'S
> E» = {Gusr- Gy < 0} N {Gypr > 0} 2 = Bécor —— Pr = By [0(—r(ud))] ~ z o (—r (u1z?)) = Ep@
X, =¢ N 0 16.8 i a nis
> E3 — {GN+1 < O} N {GN > O} N {GHPT > 0} X5 = a U 0 93 B
X, =Ke WM 6, 4 20

6. Combination of LS and Neural Networks

A No unicity of the roots::

e Case1: thereis no root

i) _ ~
Pf(l)

« Case 2: there are two roots

p® = & (=) = & ()

@ : Input layer
" © : Hidden layers
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v’ Construction of one algorithm Ag, for each event E;: ANN, ;1@-) ;2(1-) ANN, @ : Output layer
\ 'l’ . AES
Ag, 0.57 rpf(i) X107 —— ANNs=0
Findry s.t. Gy () =0 | TR ApcANN s = 0.1
I . it v’ Combination of two neural networks in the augmented LA ~= AprANN s =02
If Ggpr (1) > 0 then T e Ap-ANN s = 0.3
0.0- space (U,0)". * By
Findr, s.t. Gy () =0 ' > ANN.: classificat | S 4 - I + forgotten roots
K 1. Classification neural networ preadicts tne 1.2 t\“ L false toots
If Giipr(2) < 0 then existence or not of both roots. \\' i |
Find 75 s.t. Gigpr(ry) = 0 0.5 » ANN,: regression neural network = predicts the values ol \u . ’%ﬂr\ ;«M\\Q »15""[‘%‘!’ ﬁi:
Else: of both roots when they exist. u‘ﬁ#“"m\f AR
No roots 1 G 3 > XN\IGalge that decides if the output probability p; of : — — -
p 1 is to be trusted or not. s
7. Results 8. Conclusions and perspectives
- Robustness analysis v" Line sampling was successfully adapted on a complex limit-state function.
10;(1 = h),0;(1 + h)]|, ifG; >0 v' Two artificial neural networks were combined to directly predict the LS roots in the info-gap
hic = max| max Ps(0) < P\ ; Ig.(h) = _ . . .
h=0 \6eu(,h) l [1—h,1+h], ifg; =0 augmented space with the possibility to control the error of the first ANN.
. “* Most applications cannot afford as many training samples. There is a need to try other surrogate
 Search of Pf(h]) for 10 value of h] S [0, 02] with ANNl and ANNZ trained on 3 X 104 Samp|es. models in the augmented space.
% Sensitivity analysis could considerably help the optimization process.
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