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Abstract: A novel method to approximate solutions of parabolic Partial Differential Equations in
a low-rank Tensor Train (TT) format is developed. The work is partly inspired by [5], in which the
authors use TTs with polynomial basis functions to outperform state-of-the-art Neural Networks on the
solution of parabolic PDEs by orders of magnitude, while requiring lower computational time. The
new method, developed in joint work with Martin Eigel and Reinhold Schneider, utilizes the Dirac-
Frenkel variational principle with empirical risk as well as a physics informed choice of basis functions,
and potentially exhibits much lower computational cost even than the method presented in [5]. The
Kolmogorov Backward Equation (KBE) arising in Molecular Dynamics (MD) and the Hamilton-Jacobi-
Bellman equation arising in nonlinear stochastic Optimal Control (OC) are treated as examples. In MD
in particular, the low-rank nature of the approach enables tackling the KBE directly, instead of learning
the eigenpairs of the generator.

Our new approach is a Dynamical Low Rank Approximation [3, 4] of the PDE solution and can be
understood as an alternative to classic machine learning methods, in particular to Artificial Neural
Networks. In its abstract setting, the main idea of DLRA is to approximate solutions to matrix- or
tensor-valued ordinary differential equations (ODEs) by projecting the right-hand side of the ODE onto
the tangent space of the manifold of matrices/tensors of fixed (TT-)rank at the current approximation.
In this abstract setting, the projection is usually decomposed into orthogonal parts of the tangent space
after which a splitting scheme is applied, resulting in so called projector-splitting schemes. The obtained
approximation is quasi-optimal on a finite time domain, as occurring for instance in finite horizon optimal
control. In our PDE setting, we perform first a projection with an empirical L2–norm to “sample out” the
spatial dimension and arrive at an ODE, where the right hand side is then defined on the tangent space of
the TT manifold. This projection can be understood as an empirical least squares tensor regression based
on random samples. The theoretical properties of the method, especially in connection to the abstract
DLRA setting and to classical Galerkin projection methods, are currently being investigated, while first
numerical results in OC and MD are available.

In OC, the HJB equation arises when one searches for an optimal feedback control law. Feedback
control laws are desirable, since they are robust with respect to state perturbations and measurement
noise. However, solving the HJB equation – a nonlinear parabolic PDE of generally high dimension – is
notoriously difficult and most practical approaches rely instead on variations of Model Predictive Control
(MPC), a conservative approach, where open–loop controls are computed in such rapid succession that
they essentially close the loop. Classical schemes to solve the HJB equation such as Galerkin-schemes in
linear ansatz spaces suffer from the curse of dimensionality [2], i.e. an exponential complexity growth.
In practice, this means that the computation of a solution is often infeasibly slow, if it can be discretised
and stored at all. Our focus lies on the alleviation of the curse of dimensionality in order to enable
the numerical treatment of high-dimensional control problems. On control problems with moderate
dimensions, our method achieves similar performance to the method from [5] with computation time
decreased by about an order of magnitude [1]. While this is an encouraging result, high–dimensional
problems, for which the method is developed, still require careful tuning of the hyperparameters to avoid
instability due to the explicit nature of the solver and need to be investigated further.



The KBE on the other hand governs the time development of observables of high dimensional stochastic
processes appearing in MD, such as overdamped Langevin dynamics. The dimension of the problem is
typically 3N , where N is the number of atoms of the considered molecule. Since the molecules usually
exhibit some sort of symmetry however (like invariance of the potential w.r.t. translations), one can
usually find a set of lower dimensional coordinates, leading to effective dynamics of much lower dimensions.
An example of this might be a protein or some other complex molecular structure where, instead of
considering all atoms separately, we consider groups of them as pseudo-atoms. The TT basis functions
are then composed with the problem specific coarse-graining, the mapping from the original space to the
reduced coordinates, and the dynamical low rank scheme is applied to the KBE for the reduced dynamics.
Crucially, sampling of the empirical L2–norm can be performed on the original space, i.e. no simulation
of the difficult reduced dynamics has to be performed. The method shows promising results for various
simple potential–driven diffusion processes and low–dimensional toy molecules. Its application to high
dimensional problems is an object of ongoing investigation.
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