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Abstract:

In the field of uncertainty quantification, the need to perform many simulations often becomes pro-
hibitively time consuming, especially for complex models. Surrogate modelling is a widely used technique
to tackle this issue. In this approach, the high fidelity model (HFM) is replaced by a simplified one that
relies on assumption on the form of the output, and requires much less computing resources. Popular
models include polynomial chaos expansion, Kriging and support vector machines. An overview can be
found in Sudret et al. [6]. Nevertheless, the simplification assumptions can be hard to justify and are in
any case limited when used on real case applications, leading to inevitable interpolations errors. Quanti-
fying exactly these errors and their impacts on the uncertainty quantification results remains a delicate
issue that often requires case-by-case study.

Recently, a new framework called Physics-Informed Neural Network (PINNs) has emerged as a new
branch of the very active deep learning research field [2] and appears to offer great potential to be used
as surrogate model for uncertainty quantification. Introduced in 2019 by Raissi et al. [5], this framework
allows neural network to be more robust by having them complying to some prior physics laws described
by partial differential equation (PDE). The PINN is indeed trained to minimize both prediction error and
a residual error computed by injecting the neural network in the differential equation using automatic
differentiation. As a result, solving partial differential equations with PINNs combine the advantages
of data-driven and physics-based approaches, being both resource-efficient and faithful to physics. They
could therefore become good alternatives to the more resource-intensive finite element method.

The potential of PINNs for uncertainty quantification is apparent in the several publications published on
this precise subject since the introduction of the framework [7, 4], including papers on combinations with
other techniques like polynomial chaos expansion in Zhang et al. [8]. A concrete application of PINNs to
model the physical response of a continuous medium has been achieved in Haghighat et al. [1].

Despite their ease of implementation, they are still limited by the difficulties associated with their training.
The convergence of their optimization is notoriously sensitive to minor changes in the system and in a
way that remains unpredictable so far. The convergence depends on the classic settings neural-network
settings (choice of architecture, loss function, otpimizer, tec.) but also on hyper-parameters specific to
PINNs, notably:

• the choice of points to calculate the prediction error and the error due to the PDE

• how to impose the boundary and initial conditions of the problem

• how to combine the different losses

A lot of work can be found in the recent literature on exploring this hyper-parameters and better under-
standing the optimization process. For instance, a curriculum learning approach is proposed in [3] but
many grey areas remain to be clarified.



In this preliminary work we have considered the simple case of a 2D elastic beam under different boundary
conditions. We will present how a physical approach can improve the challenging optimization step. The
obtained model is then used to quantify the spatial uncertainty of the elastic properties of the material
using a Monte Carlo method.

References

[1] Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A deep learning
framework for solution and discovery in solid mechanics: linear elasticity. 2020.

[2] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, June 2021.
Bandiera abtest: a Cg type: Nature Research Journals Number: 6 Primary atype: Reviews Pub-
lisher: Nature Publishing Group Subject term: Applied mathematics;Computational science Sub-
ject term id: applied-mathematics;computational-science.

[3] Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and Michael W. Ma-
honey. Characterizing possible failure modes in physics-informed neural networks. arXiv:2109.01050
[physics], November 2021. arXiv: 2109.01050.

[4] Marcus J. Neuer. Quantifying Uncertainty in Physics-Informed Variational Autoencoders for Anomaly
Detection. In Valentina Colla and Costanzo Pietrosanti, editors, Impact and Opportunities of Artificial
Intelligence Techniques in the Steel Industry, Advances in Intelligent Systems and Computing, pages
28–38, Cham, 2021. Springer International Publishing.

[5] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, February 2019.

[6] Bruno Sudret, Stefano Marelli, and Joe Wiart. Surrogate models for uncertainty quantification: An
overview. pages 793–797, March 2017.

[7] Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-informed neural
networks. Journal of Computational Physics, 394:136–152, October 2019.

[8] Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying total uncertainty in
physics-informed neural networks for solving forward and inverse stochastic problems. Journal of
Computational Physics, 397:108850, November 2019.

Short biography – I am a french engineer doing a PhD at KU Leuven within the Greydient ITN
project. (This project has received funding from the European Union’s Horizon 2020 Research and Inno-
vation programme under grant agreement n°955393) My goal is to develop grey-box inverse identification
algorithms to characterize the properties of materials. I am working in partnership with the company
MatchID which develops a Digital Image Correlation (DIC) technology that allows to measure entire
deformation fields.


