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Abstract:

Models are used to describe the behavior of a technical system under specific aspects. When parameters
of the model are defined deterministically, the prediction accuracy of the models deteriorates, since the
uncertainty of the model parameters is ignored. In respect of an increase in virtualization and a decrease
in experimental validation, quantifying model prediction accuracy is becoming more important. The
quantification of model parameters uncertainty can be achieved by a statistical parameter calibration
using Bayes’ theorem, whose numerical solution is possible via the implementation of Markov-Chain-
Monte Carlo algorithms [7]. For the application of this method, the model must be evaluated several
thousand times while changing the uncertain parameters between simulations. Due to the increasing
complexity of models, this can lead to unbearable high computing times. This problem can be addressed
by parallelizing the model simulations using efficient algorithms such as the Transitional Markov Chain
Monte Carlo Algorithm [3, 2] or integrating surrogate models like a kriging model [1].

Finite Element models are commonly used models in product engineering. They contain a large number
of parameters defining the models’ geometry, material, and boundary conditions. It is usually not possible
to assess the true value of these parameters, because of their inherent variability and randomness. For
example, dimensions are influenced by production tolerance and material parameters might differ between
batches. Since these parameters are unknown concerning their statistical distribution, it is a common
approach to describe them by the mean or extreme value which is causing uncertainty. The uncertainties
within the model parameters result in uncertainties in the model output. To achieve robust response
predictions through a FE analysis a rational approach has to include these unavoidable uncertainties
[6]. Uncertainty of model parameters belongs to the category of data uncertainty. But it is noted, that
when applying FE models also other types of uncertainty occur, such as through the linear modeling of
nonlinear interactions or ignoring of elasticity at bearings or joints. These can be assigned under the
term of model uncertainty [5].

To statistically describe model parameters by a probability distribution, a large amount of data is neces-
sary. However, available data is usually scarce, so the information is limited to mean values or upper and
lower bounds. Under these circumstances, it is reasonable to start selecting a convenient distribution like
a uniform or normal distribution to describe the uncertain model parameters regarding a prior distribu-
tion. In general, it is recommended to assume all model parameters to be uncertain parameters, unless
their influence has been previously investigated by a sensitivity analysis. The computational effort for
the calibration is independent of the number of variables introduced while considering all uncertainties
ensures a robust prediction without distorting the result by prejudice. The implemented method for
parameter calibration allows updating the existing information about the model parameters when new
information becomes available. As a source of new information results from experiments or high fidelity
model simulations are conceivable. The fusion of different sources of information is performed by appli-
cation of Bayes’ theorem. The result of the calibration is an update of the prior distribution into the
posterior distribution. This is performed under consideration of a likelihood function, which describes
the degree of agreement between the two sources of information. The function is aimed to be maximized
during the calibration. It is determined during calibration by simulating a reference quantity for different



parameter values. Eigenfrequencies and eigenvalues as a result of modal analysis are used as reference
quantities.

To solve the Bayes’ theorem numerical methods are applied to avoid high-dimensional integrations. The
Markov Chain Monte Carlo Algorithm is based on Markov Chains on the model parameters space whose
steady-state distribution is the distribution of interest. The solution consists of samples that are in the
same distribution as samples that would have been drawn directly from the posterior. Similar to the
samples resulting from a classical Monte Carlo simulation, also MCMC samples can be used for further
inferences. Estimates and uncertainties are approximated by sample averages or standard deviations.
The quality of the approximation depends on the size of the sample and the degree of dependence in
the sample [4]. The TMCMC Algorithm is applied preferably over the Metropolis-Hastings Algorithm.
Its advantages are its applicability to multimodal, very peaked, and flat distributions, and its efficiency
towards higher-dimensional parameter space. Furthermore, the TMCMC Algorithmen is parallelized, to
simulate and assess the likelihood of samples in parallel on a high-performance computer to significantly
reduce the calibration time. Moreover, autonomous communication between the running Algorithm and
the FE Solver has been established.
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