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Abstract:

The robust analysis of predictive models, whether they are phenomenological or learned from data, re-
quires the ability to propose interpretable perturbations of the inputs (or features) and outputs (or labels)
of these models. These are random variables with known or empirically manipulable distributions. An
important issue is therefore to propose an interpretable and minimally subjective approach to perturbing
these distributions, adapted to the partially available or assumed information about them (e.g., support,
shape, expert’s assessment on some of the inputs statistics).

In the sensitivity analysis (SA) literature, several perturbation mechanisms have been proposed, based on
the Kullback-Leibler (KL) divergence [4], or based on the Fisher metric [2]. These perturbation schemes
lead to the class of “perturbed-law indices” (PLI), aiming at assessing input importance through the study
of sensitivity of the model output with respect to the amplitude of the perturbation. In the machine
learning (ML) community, KL divergence based perturbation have also been implemented in order to
assess feature importance [1]. These methods rely on three main ingredients:

e Knowledge of the distribution, or the observation of an i.i.d. sample of the inputs/features, denoted
P

e The choice of a metric (or quasi-metric) D on a particular space of probability measures, denoted
P

e The definition of a set of probability measures respecting the desired perturbations, denoted C.

Whenever only an i.i.d. sample of the inputs is observed, P is defined as the empirical probability
measure associated with the sample. The distributional perturbation problem can then be formalized as
the projection @ of P onto C with respect to D, in other words:

Q@ = argmin D(P,G)
GeP

s.t. Gel

This work explores the particular choice of the 2-Wasserstein distance as a metric between probability
measures, and more specifically on the space Pa(R) of real-valued probability measures with finite 2-nd
order moments, defined for P,G € P2(R), as [6]:

W, :/0 (FF (2) — F5'(x))" da

where F;’, for a probability measure G € P2(R), denotes the right-continuous generalized inverse of the
probability distribution Fg of G, i.e.,

FZ (y) :=sup {z € R| Fg(x) <y} =inf {x € R| Fg(z) > y}.



Additionally, C is characterized as constraints over the quantile values of the desired optimally perturbed
projection Q.

It can be shown that the resulting optimization problem can be equivalently written as an L?([0,1])
projection of F', with respect to the usual L? norm, with monotonicity and interpolation constraints.
In its simplest form, it admits an analytical solution: atoms with a specific mass are added to P at the
desired quantile values, in order to verify the quantile constraint.

In order to further take advantage of the equivalent representation of the distributional perturbation
problem, and to better control the shape of the solution, the choice of restricting the solution to piece-
wise continuous monotone polynomials is explored. This restriction can be written as a convex constrained
quadratic program, through the representation of sum-of-squares polynomials using semi-definite matrices
[3, 5]. Figure 1 illustrates this particular projection of Fiz’, and the subsequent simulated sample obtained
from the solution, on the airquality dataset.

Approximated simulations
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Figure 1: Piece-wise continuous monotone approximation of the Ozone variable under quantile con-
straints, and resulting simulations.
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