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Abstract:

Precise statistical inference in spatially-dependent complex systems usually requires to either benefit from
a high computational budget which allows system evaluation at a dense network of inputs variables x, or
to rely on assumptions on the model output Yx. For practical reasons, the latter is generally preferred
and widely used in Uncertainty Quantification (UQ), with the resulting class of approaches being broadly
called Surrogate modelling. In this setting, practitioners build upon an initial design of experiments to
construct a proxy which accurately reflects users’ knowledge of the system.
While techniques exist to approximate Yx or its distribution µx, Gaussian Process Regression has gained
in popularity as it provides a probabilistic prediction of Yx. This enables us not only to perform inference,
but also to guide further data acquisition. However, this comes at the cost of a strong (Gaussian) distri-
butional hypothesis. Other popular methods such as Artificial Neural Networks or Polynomial Regression
focus on leveraging spatial regularity of the system, but do not provide a probabilistic prediction, which
makes their application to design of experiment less straightforward.
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Figure 1: Typical setting: probability distribution µx (red curves) versus collected data (histograms).
Here, our goal is to perform sample-based inference simultaneously on the whole field {µx}x∈D

In this work, we focus on a non-parametric approach, which allows to break free of distributional hypoth-
esis on the system output. We use a class of distribution-valued fields called Spatial Logistic Gaussian
Process (SLGP) to model and estimate the distribution field {µx}x∈D based on a scattered observations
(xi, ti)1≤i≤n. The SLGP inherit its spatial regularity from a latent Gaussian Process [1]. This framework
accommodates for heterogeneous sample sizes across space, with little to no replicates, as well as changes
of shapes and modalities on the target densities. This distinguishes our approach from most techniques
arising in distributional regression and conditional density estimation. Since the model provides a prob-
abilistic prediction of µx, it allows for UQ, but also for adapting principled sequential approaches from
the GP framework to our non-parametric setting [3].

We explore the potential of SLGPs in stochastic inverse problems, where we revisit the framework of Ap-
proximate Bayesian Computation (ABC) [2]. We demonstrate on application cases from natural sciences
that by surrogating the ABC-likelihood, our model enables scientists to perform accurate inference even



in the low to moderate data regime. Additionally, we can benefit from the SLGP’s probabilistic nature
to guide data acquisition, with approaches inspired from those presented in a Gaussian setting [4, 5].

Inverse problem′s posterior︷ ︸︸ ︷
π[ x | y ] ≈

ABC posterior︷ ︸︸ ︷
π[ x | ∆(y, ysim, x) ≤ δ ] ∝ π[ x ]·

ABC likelihood︷ ︸︸ ︷
π[ d(y, ysim, x) ≤ δ | x ]
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Figure 2: Informal summary of SLGP-ABC: we surrogate the ABC likelihood (iėṫhe dissimilarity distri-
bution at x) with a SLGP, and derive the ABC posterior from it.

(a) Dissimilarities between observed and simulated data. (b) SLGP-ABC posterior on the source depth.

Figure 3: SLGP in stochastic inverse problem: using 50 simulations to infer a contaminant source depth
under uncertain geological structure (collaboration with G. Pirot, Univ. of Western Australia).

Our method’s soundness is evaluated through the adequation between our predicted SLGP-ABC poste-
riors and histograms obtained by running classical ABC for an extended number of simulations. This
highlights the sped-up achieved and the consistency between both approaches.
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