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Abstract:

Deep learning models have recently been used to substitute parts of simulation codes with neural networks
[3]. In this context, huge networks do not seem appropriate from a computational point of view. With this
in mind, this work aims at building efficient shallow networks. The guiding principle of this research starts
from this assessment: some recent papers [4] point the optimizer out as a lever to improve performances.
There are stochastic and deterministic optimizers. Before analysing stochastic algorithms it is imperative
to deeper understand the deterministic ones (as stochastic optimizers are often based on deterministic
ones).

The first contribution concerns a validation methodology. Usually to green a new optimizer light it is
tested on machine learning benchmarks: MNIST, CIFAR-10,... In such a case, there is no clue about
critical points localization and their values. As a result, the optimizer may give a saddle point with a low
value and without any further information the algorithm is said to be satisfactory. An original and more
thorough way of testing is suggested: build small networks which make it possible to compute exactly
the critical points and their nature. Several examples are derived changing the asymptotic properties
(singular hessian, steep gradients etc.) around the minimums.

The most used deterministic optimizers are applied on these examples: Gradient Descent(GD), Momen-
tum, Adam, Levenberg-Marquardt(LM) [2] and their variants. Two aspects are interesting:

1. A statistical study on the probability of finding a given minimum is made. It is remarkable that the
usual algorithms of order one do not get any maximums or saddle points without adding stochastic
perturbations;

2. For a given minimum θ∗, it is worthy to consider the set of all initial points that converge toward
θ∗. The display of these regions reveals some surprising behaviors 1b. The most impressive one
is the significant initial conditions sensitivity of Adam algorithm. The situation is even worse:
starting very close to a minimum the optimizer may converge to another one. This is obviously a
non-desirable property.

To explain what is observed, continuous versions of the optimizers - that is to say differential equations -
are derived so that a simple discretization of these ODEs (Euler most of the time) gives back the classic
algorithms. In this framework, Lyapunov stability plays an essential role:

1. Maximums and saddle points are unstable so the trajectory can always escape their neighbourhoods
[1];

2. Concerning Momentum and Adam, the form of Lyapunov functions indicates that even close to a
minimum the potential energy is not necessary zero. So an update is still possible although the
algorithm should stop.

This framework opens a large set of possibilities about the discretization scheme to use:
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Figure 1: Sensitivity to the initial conditions

1. Adaptive schemes like Euler-Richardson are relevant in this field. Indeed, in practice a huge amount
of time is spent to tune the hyperparameters: width, depth, activation functions, learning rate,
coefficients of the moving average,... These new schemes enable the practitioner to get rid of all the
hyperparameters involved in the optimization. As well as save time, this kind of algorithm admits
convex regions 1c.

2. The Lyapunov theory leads quite naturally to energetic considerations. Starting from the ODE,
some quantities that should decrease over time are identified. New adaptive strategies for the
learning rate can be designed by requiring that the discrete equivalents of these quantities also
decrease. This ensures convergence whereas a lot of trajectories diverge for the canonical versions
(see the large amount of brown diverging trajectories for GD 1a whereas its corrected version 1c
remains stable in the whole domain).

In this work, benchmarks more suitable for a meticulous analysis of deep learning optimisation are built.
The observed behaviours lead to identify some valuable mathematical properties. This brings to original
ways for adapting optimizers’ parameters with a moderate sensitivity to the initializer.
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