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Abstract:

Statistical analysis of probability measures is growing in importance in both applications and theory. For
instance, for many applications where artificial intelligence is involved, we can deal with data on the space
of probability measures. Similarly to standard model, one has to learn from a subset of from training
data, and then apply for prediction, classification, segmentation, and retrieval [4]. However, extending
standard models from Euclidean spaces to manifolds requires a specific geometric structure and imposes
additional constraints. In Information Geometry [2], the space of probability measures, denoted P, is
imposed with a metric g and a pair of conjugate connections. As a new result, we show that traditional
connection coincides with the Levi-Civita connection.

In this work, we consider the space P in the finite case with dimension N + 1. Hence, the space can be
represented as the simplex in the Euclidean space RN+1. We introduce the manifold structure on P by
the chart with the usual projection on the first N coordinates. Then we can define the bases for tangent
and cotangent spaces. In fact, one remarkable property is that these spaces are trivial bundles. In the
literature [3], give the definition for the statistical bundle with a basis of P. The Exponential atlas and
the Mixture atlas were defined on the statistical bundle, so that the tangent space is the corresponding
fiber of the statistical bundle. Unfortunately, this statistical bundle is not trivial.

Many different metrics, semi-metrics on P have been studied, including Wassertein, Jensen-Shannon, L1,
L2. In this work, the space P is then equipped with the Fisher-Rao metric gFR and the the Levi-Civita
connection. Using a local coordinate system, we introduce the Christoffel symbols, the geodesic, the
exponential map, the logarithmic map and the parallel transport. We note that it is not straightforward
to solve for the geodesic and parallel transport in a general Riemannian manifold. Furthermore, the
Riemannian space (P, gFR) is proved to be isometric with the unit Sphere in RN+1 which allow us to use
nice and practical properties.

As an application, we focus on the problem of transfer learning [1]. Usually, data are mapped to the
tangent space of a specific position. The idea of transfer learning is to transfer the statistical model from
an original point to another point, called target point. In particular, we propose a transfer learning using
explicit expressions of parallel transport. We show different applications where transferring a learned
statistical model is of interest: Principle Component Analysis (PCA), and Linear Regression. The results
show the effectiveness of the proposed methods with potential extension to different real world problems.
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Short biography – We are interested in deploying Gaussian Processes in Riemannian manifolds, such as
the space of probability measures. To do so, we need to study the Riemannian structure and Covariance
functions on this space. Then we want to apply it in machine vision to Detecting and Classifying multiple
forms of objects. We aim to develop accurate methods that will be able to learn and do tasks in a single
unified framework. This PhD thesis is funded by ANR-AI program of Clermont Auvergne University.


