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Abstract:

Modelling the response of complex systems has always been a challenge in engineering. Predictions for
an engineering system can be obtained from different sources, such as mathematical models, computer
simulations, physical experiments or expert opinions. Generally, it is possible to identify two classes of
predictive models: high-fidelity (HF) models, that produce accurate estimations but are associated with
high computational or financial costs, and low-fidelity models (LF) that are less accurate, but also less
expensive to run.

Within the context of the Horizon 2020 GREYDIENT project 1, we consider the special case of grey-
box systems for which very few and expensive-to-acquire experimental data are available, in addition to
expensive computational models that describe the underlying physics. The two models are expensive to
evaluate, and as a result, the data that can be obtained from each of them are limited. In this setting,
the question that arises is how to perform accurate uncertainty quantification, statistical inference or
optimisation, which typically involve a large amount of system analyses [3].

Multifidelity surrogate modelling (MFSM) approaches can provide the solution to this challenge. Sur-
rogate models (SM) or metamodels, are inexpensive models that provide an approximation of expensive
computational models based on a limited number of observations, and allow an accurate estimation of
the output statistics of the approximated expensive models. Moreover, multifidelity (MF) models com-
bine multiple models of varying fidelity, typically, supplementing few HF data with a larger number of
lower-fidelity data. In MFSM, the different fidelities are combined inside a single surrogate model [1].

In our MFSM setting, the experimental data are considered to be single realisations of a black-box high-
fidelity model. On the other hand, the available white-box computational models are considered as their
low-fidelity counterparts. The MF model obtained by combining the two is a so-called grey-box model
(Figure 1), aimed at improving the modelling accuracy and the predictive power of white-box models by
integrating the data-driven black-box model, also including uncertainty measures in its predictions.

Moreover, real-world experiments produce data contaminated by measurement noise, and the low-fidelity
physics-based model can in general be very expensive, and is itself often represented by a surrogate
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1https://www.greydient.eu/.
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Figure 1: A grey-box model is a combination of a physics-driven white box and a data-driven black-box
model.

In a first phase, we aim at developing and benchmarking different MF methodologies, initially under the
assumption of noise-free models. Figure 2 showcases a preliminary investigation on the performance of
MF modelling on a well-known benchmark, the borehole function [2]. Subsequently, we will investigate
different techniques to fuse the noise-contaminated high- and low-fidelity information in MF models that
are accurate and robust to noise.

Figure 2: Comparison of a multifidelity (MF) model and a high-fidelity polynomial chaos expansion model
(HF PCE) on the borehole function case study. The root mean square error is calculated for increasing
high-fidelity experimental design size.
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