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Abstract: Gaussian Processes are considered as one of the most important Bayesian Machine Learning
methods [5]. They typically use the Maximum Likelihood Estimation or Cross-Validation to fit parameters
[2]. Unfortunately, these methods may give an advantage to the solutions that fit observations in the
mean square sense, but they do not pay attention to the coverage and the width of Prediction Intervals.
This may be inadmissible, especially for systems that require risk management. Indeed, an interval is
crucial and offers valuable information that helps better management than just predicting a single value.

In this work [1], we address mainly the problem of model misspecifications when estimating Predic-
tion Intervals for Gaussian Processes Regression and we develop a robust approach for estimating these
Prediction Intervals, called Robust Prediction Interval Estimation (RPIE).

First, we use the Leave-One-Out Cross-Validation method to define a new loss function with respect to
the Gaussian Processes hyperparameters that ensure that the estimated Prediction Intervals the desired
level of coverage probability, also known as the optimal type II Coverage Probability. Unfortunately,
the defined loss function is non-convex, non-continuous and step-wise constant. Moreover, replacing the
loss function by a continuous loss-function converging point-wise to the original one does not simplify
the task. Indeed, the optimization is still unfeasible with classical minimization approaches and there
would be infinite solutions as we show that, under some appropriate assumptions, the solution’s set is
non-empty.

The second step of the method consists of reformulating it differently. The idea is to use a similarity
measure between Gaussian distributions to pick up the closest pair of hyperparameters among the set of
hyperparameters that achieved the desired Coverage Probability to some reference hyperparameters. To
do so, we considered hyperparameters determined by a standard Cross-Validation or Maximum Likelihood
Estimation method as a reference and the Wasserstein distance [3] between the Gaussian distributions
as the optimal similarity measure. Finally, we reduce the complexity and Dimensionality of the problem
by applying the relaxation method on the length-scale vector.

This method is applied successfully to academic examples and an industrial case that has motivated the
approach. In the following example, we consider the Morokoff & Caflisch [4] function, evaluated on an
experimental design X of n = 600 observations with d = 10 variables, and we consider the Matérn 5/2
anisotropic geometric correlation model. Table 1 shows the results before and after applying the RPIE
method. It highlights the ability to achieve the optimal coverage level (here 90%) of Prediction Intervals
by reducing their width and variance.
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Table 1: Performances of the estimated Prediction Intervals; Confidence level 1− α = 90%

Before RPIE After RPIE

ML θ̂ML MSE-CV θ̂MSE ML θ̂ML MSE-CV θ̂MSE

P̃1−α 94.3 99.1 90.0 90.0
CP1−α 95.3 98.7 88.7 92.0

MPIW1−α 1.49 10−1 1.66 10−1 5.57 10−2 (-62.3%) 6.18 10−2 (-62.7%)
SdPIW1−α 7.30 10−3 5.01 10−3 1.19 10−2 (+63.0%) 1.53 10−2 (× 2.05)

CP1−α: Coverage Probability in %; P̃1−α: The Leave-One-Out probability in %; MPIW: Mean of Prediction Interval widths and
SdPIW: standard deviation of Prediction Interval widths.
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