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Abstract:

Randomized Maximum Likelihood (RML) is an approximate posterior sampling methodology; it has
been widely used in Bayesian inverse problems with complex forward models, particularly in petroleum
engineering applications. The algorithm proceeds by first perturbing the data and the prior mean, and
then optimizing the unnormalised log-posterior using these perturbed values (see Algorithm 1).

Algorithm 1 Randomized Maximum Likelihood (RML)

mRML : number of samples required
For m ∈ [mRML]:

1. Sample Dm ∼ Np(D,Σobs) from the Gaussian likelihood, Dm ∈ Rp

2. Sample µm ∼ ND(µ,Σ) from the Gaussian prior, µm ∈ RD

3. Construct log-posterior w.r.t. the randomizations (Dm, µm)

Om(x) := logNp(f(x)|Dm,Σobs) + logND(x|µm,Σ) (1)

4. Obtain x⋆
m as the maximizer x⋆

m = argmaxx Om(x).

We address solving the optimization problems (1) efficiently in the challenging case of a high-dimensional
input space RD. We focus on the specific scenario where the log-likelihood has a low-dimensional active
subspace, that is when logNp(D|f(x),Σobs) ≈ g(ATx), where g : Rd → R with d ≪ D, and A ∈ RD×d

with ATA = Id. This scenario is widely encountered in various Bayesian inverse problems applications.

We summarize our methodological contributions below:

• we propose a new methodology for maximizing the RML objective functions (1) for high-dimensional
input spaces x ∈ RD via high-dimensional Bayesian Optimization (HD-BO) with random embeddings;

• we propose a natural way to exploit the shared simulator f(x) which is present in all of the objective
functions (1), as well as an adjustment needed to incorporate a Gaussian prior distribution without
a low-dimensional structure (see Figure 1 for the first two iterations in the simpler case of a Uniform
prior, where the objective functions become Om(x) = logNp(f(x)|Dm,Σobs) ≈ gm(AT

mx));

• in the limited budget setting, our methodology often outperforms alternative gradient-free optimiza-
tion methods in a series of synthetic and real-world experiments (Figure 2);

• we visualize the posterior distribution in the active subspace, together with the samples produced
by our methodology; we show that the samples are indeed close to ‘true’ RML samples (collected
via an infinite computational budget), while also covering well the high posterior density regions
(Figure 3).
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Figure 1: To condense notation, we write n := n0 for the initial points and M := mRML for the RML
objectives. Also, we suppress the superscript k corresponding to the random embedding Rk, i.e., yq := ykq
and Om(y) := Om(Rky) for q ∈ [n] and m ∈ [M ]. From top to bottom, according to the arrows: first HD-
BO iteration to collect yn+1 := ykn+1 = argmaxy a

k
n+1(y) (acquisition function) from O1(y) ∼ GP, then

perform f(Rky
k
n+1) which generates data points yn+1, Om(yn+1) := ykn+1, Om(Rky

k
n+1) for all m ∈ [M ];

second HD-BO iteration to collect yn+2 := ykn+2 = argmaxy a
k
n+2(y) from O2(y) ∼ GP, then perform

f(Rky
k
n+2) which generates data points yn+2, Om(yn+2) := ykn+2, Om(Rky

k
n+2) for all m ∈ [M ].
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Figure 2: Given the samples x⋆
m selected by

our procedure (HD-BO-RML) and alternative
competing gradient-free optimization methods,
we plot negative mean returns

1

mRML

mRML∑
m=1

−Om(x⋆
m)

versus the computational budget (averaged over
5 optimization trials, lower values are better)

(a) PDE (b) RML oracle (c) HD-BO-RML

(d) Ebola (e) RML oracle (f) HD-BO-RML

(g) MHD (h) RML oracle (i) HD-BO-RML

(j) HIV posterior (k) RML oracle (l) HD-BO-RML

Figure 3: Posterior landscape in the active sub-
space (left), oracle RML samples (middle) and
RML samples obtained by our procedure (right).
The RML samples are displayed in orange.
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