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Abstract:
Optimizing the electrical production of a wind farm starts with finding the number and the optimal
positions of the turbines that minimizes the losses caused by wake interactions and the installation cost
while satisfying exclusion constraints. The optimization variables are the number and the set of positions
of the turbines, and take the form of a cloud of points. These clouds are sets of coordinates with
varying finite cardinalities. This is a natural encoding for variables that are invariant under permutation.
Simulating in a realistic fashion a wind farm’s yield is computationally expensive and all analyses requiring
a large number of evaluations are inefficient. In a classic way, this work deals with replacing the time-
consuming simulations by a surrogate model, such as a Gaussian process, for a later use in a Bayesian
optimization framework.

This study addresses the problem of defining valid and efficient covariance kernels over variable-size clouds
of points. This allows capturing the trend and important properties of the functions of interest.

There are several ways to define such kernels. A common way is to compose conditionally negative
definite metrics with specific functions such as Radial Basis Functions (RBF). This ensures the kernel
validity, in terms of semi-positive definiteness. In [1], for instance, sliced-Wasserstein is shown to comply
with these conditions.
Another way consists in associating measures to the clouds of points through a deterministic mapping [2].
Yet, this mapping is not unique: it typically consists in selecting a specific probability density (uniform,
Gaussian, etc): for a given cloud, one can consider several empirical hidden generative distributions.
Once these empirical probabilities are chosen, one can directly exploit them as in [2] or embed them into
a characteristic Reproducing Kernel Hilbert Space (RKHS) [3]. In the RKHS, the inner product of the
images of two clouds is a valid covariance and defines a distance, which can be plugged into a kernel.

We test different kernels built on the above principles. Those that are based on a metric plugged into
an RBF comprise the sliced-Wasserstein distance, the Wasserstein distance between empirical Gaussians
which can be expressed in a closed form [4] and the Mean Maximum Discrepancy (MMD).
Kernels based on embedding distributions include (the estimations of) the uniform and the normal laws.
One should keep in mind that these different methods are not mutually exclusive for characterizing a
given kernel.

We also propose an alternative kernel constructed by considering the vector of features relevant to our
clouds such as the mean and eigen components of the covariance matrix.

The above mathematically valid kernels are compared using two series of tests.
First, for each kernel, we assess how the covariance between two clouds of points changes with simple
geometrical transformations of the clouds (see 1).
Second, the prediction performances of the different kernels are compared. For this, we create a bench-
mark of relevant test functions over clouds of points, including one that mimics wind farms power pro-
duction, and a design of experiment problem.
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Figure 1: Correlations between clouds as measured by different kernels: Battachayra kernel (red), sliced
Wassertein (green), Wassertein between Gaussians (yellow), MMD substitution(blue), uniform embeddings (dark
turquoise), and Gaussian embeddings (violet). The clouds are rotated (top right), translated (bottom left) and
dilated (bottom right).
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