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Abstract:

In natural sciences and engineering, one is often faced with the problem of reconstructing some unknown
function u0 from indirect data that has been generated by a known physical process. Here indirect means
that we do not have access to the actual value of the function at some selected points, but only to (for
example) integrals, or other linear forms of the function. Such problems are broadly known as inverse
problems.

Inverse problems can be solved in a Bayesian way by putting a prior on the unknown u0 (usually gaussian
process priors are used) and then using the conditional distribution to approximate the unknown function.
There is a rich litterature dedicated to such approaches [3].

In this work, we extend the usual Bayesian inversion framework to include (partially) known trends.
These trends are modelled as linear combinations of basis functions, with a multivariate Gaussian prior
on the trend coefficients. In essence, this is an extension of the usual universal kriging approach to inverse
problems.

In order for universal inversion to be applicable real-world inverse problems, in particular 3 dimensional
ones, we leverage modern distributed computing frameworks that allow large matrices to be stored in a
distributed fashion on a computing cluster.

We demonstrate our universal inversion techniques on a large-scale gravimetric inverse problem based on
data collected on Stromboli island [2], exploring how various basis functions perform.

Figure 1: Stromboli volcano: Estimated underground density (posterior mean), cylindrical + planar trend.

Furthermore, we extend results from [1] to provide fast k-fold cross validation formulae for universal
inversion an explore how these can be used for model selection.



Our whole Bayesian inversion machinery is distributed as an open source Python package [4] which can
be used on any linear inverse problem, the user only having to provide the forward operator and the
geometry of the inversion grid, while being able to choose from pre-included trend functions.

This presentation is based on joint work with David Ginsbourger and Niklas Linde.
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