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Abstract:

Seismic fragility curves: The estimation of so-called fragility curves is a crucial part of seismic prob-
abilistic risk assessment (SPRA) or probabilistic based earthquake engineering (PBEE). The fragility
curve is the probability of failure of the structure conditionally to a seismic intensity measure, a scalar
value indicating the strength of the seismic ground motion, and a vector of mechanical parameters of the
structure. Nowadays seismic fragility curve estimation is usually performed by numerical simulations,
The computational burden is thus significant, as it requires a consequent number of numerical simulations
to provide an accurate estimation. The fragility curve can be expressed as

Ψ(a,x) = P(z(A,X) > C|A = a,X = x) , (1)

where A is the random variable of the seismic instensity measure, X is the random vector of the me-
chanical parameters of the structure, z(a,x) is a scalar mechanical demand parameter obtained through
numerical simulation of the structure with mechanical parameters x subjected to a seismic ground mo-
tion of intensity a. C is a threshold of acceptable behaviour of the structure regarding the mechanical
demand parameter studied. Moreover, following the lines of [2], it is of paramount importance to identify
which source of uncertainty (coined as epistemic uncertainty) can be reduced in a near-term and regard-
ing a reasonable budget and the source of natural randomness due to a physical phenomena (coined as
aleatory uncertainty). Again according to [2], the distinction between aleatory and epistemic uncertainty
is a pragmatic way to distinguish which uncertainties the engineers can reduce and those for which it is
impossible. It thus allows to make a information based design choice for the engineer. In our case, the
aleatory uncertainty is the seismic ground motion uncertainty while the epistemic uncertainty concerns
the uncertainty on the mechanical parameters of the structure. It thus of particular interest for the
engineer to study the probability distribution of the random functions a → Ψ(a,X).

Kriging: The goal of kriging is to provide an estimation of the regression function in supervised learning
as well as an uncertainty on its prediction. This prediction uncertainty can be interpreted as a degree of
confidence on the engineer’s quantity of interest, which make this regression technique very appealing for
industrial risk assessment studies. Thus, we propose to estimate seismic fragility curves using kriging in
order to tackle the computational burden of mechanical simulation and to provide a confidence interval
on the estimated fragility curves in the same time. We define the following nonparametric regression
model:

y(a,x) = g(a,x) + ε , (2)

where y(a,x) = log(z(a,x)) and ε ∼ N (0, σ2
ε). The logarithm transformation is due to a multiplicative

noise in our data. We then suppose that the regression function g is a realization of a real-valued
Gaussian process G. Denote that Y (a,x) = G(a,x) + ε is also a Gaussian process. Given a dataset
of observations Dn = ((ai,xi), y(ai,xi))1≤i≤n and thanks to the kriging equations we can write that

(Y (a,x)|Dn) ∼ N (Ĝn(a,x), σ̂n(a,x)
2), the kriging based estimator of the fragility curve then writes:

Ψ(1)(a,x) = Φ

(
Ĝn(a,x)− log(C)

σ̂n(a,x)

)
, (3)



where Φ is the cdf of the standard Gaussian distribution. The kriging uncertainty can be propagated by
conditioning the fragility curve estimation to a realization Gn of (G|Dn):

Ψ(2)(a,x) = Φ

(
Gn(a,x)− log(C)

σε

)
, (4)

remark that Ψ(1) = EGn [Ψ
(2)]. Ψ(2) is the propagation of the kriging posterior distribution (G|Dn) in

the fragility curve while Ψ(1) is the posterior mean estimator of the fragility curve.

Sensitivity analysis: The goal of sensitivity analysis is to measure the impact of the input parameter
uncertainty of a system into its output uncertainty. In particular, GSA takes into account the overall
uncertainty ranges on the input parameters. It is natural to perform sensitivity analysis on the input
parameters tainted by epistemic uncertainties, in our case the mechanical parameters of the structure, it
will help engineers to make design choices affecting the input parameters uncertainties they can master in
a near-term. The sensitivity indices will be defined on the seismic fragility curve, seen as a goal-oriented
quantity of interest. We propose to estimate the aggregated Sobol indices [3], a natural extension to
functional output of the classical Sobol indices for scalar output. Considering that X = (X(1), . . . , X(d)),
Ψ̄ = EX[Ψ(a,X)] and Ψ(a,X(i)) = EX[Ψ(a,X)|X(i)], the aggregated first order Sobol indices writes:

SFC
i =

EX(i) [∥Ψ̄−Ψ(., X(i))∥2]
EX[∥Ψ̄−Ψ(.,X)∥2]

, (5)

where ∥Ψ̄−Ψ(., X(i))∥2 =
∫ a1

a0
(Ψ̄(a)−Ψ(a,X(i)))2da. Moreover, we propose to estimate the βk indices

[1], which are Sobol indices on the kernel embedding of the quantity of interest. These last indices are
appealing because kernel methods main purpose is to handle complex data types, such as functional data.

Kriging-based sensitivity indices estimation: Estimation of Sobol indices are usually performed
using the so-called pick-freeze method, which require a consequent Monte-Carlo sample size for an accu-
rate estimation (at least one thousand times the input parameter space dimension). We will thus use the
kriging metamodel developed for uncertainty quantification of the seismic fragility curves to perform ag-
gregated Sobol and βk indices estimation. We will also propagate the kriging prediction uncertainty into
the sensitivity indices estimates as proposed in [4]. Sampling predictions in the conditional distribution of
the kriging metamodel is computationally challenging for this sample size and requires specific algorithms.
Monte-Carlo sample size and training size of the kriging model will be chosen so that the uncertainty
coming from the Monte-Carlo estimation of the sensitivity indices and from the kriging metamodel are
of the same order of magnitude.
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